Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598717

RESUMO

Oral ingestion of probiotics is a promising approach to relieving inflammatory disease through regulating the gut microbiota. A newly discovered strain, Lactobacillus rhamnosus CY12 (LCY12), obtained from cattle-yak milk, displayed numerous probiotic properties. These included enhanced viability in low pH and bile environments, adhesion capabilities, and potent antimicrobial effects. The research aimed to explore the beneficial impacts of the novel LCY12 strain on colitis in mice induced by dextran sulfate sodium (DSS) and to elucidate the underlying molecular mechanisms. The results of the study showed that administration of LCY12 effectively helped to reduce the negative effects of DSS-induced body weight loss, disease activity index score, colon length shortening, loss of goblet cells, and overall histopathological scores in the intestines. Simultaneously, LCY12 administration significantly alleviated intestinal inflammation and safeguarded intestinal barrier integrity by enhancing IL-10 levels, while dampening IL-6, IL-1ß, and TNF-α production. Additionally, LCY12 boosted the presence of tight junction proteins. Furthermore, LCY12 hindered the TLR4/MyD88/NF-κB signaling pathway by downregulating TLR4 and MyD88 expression, inactivating phosphorylated IκBα, and preventing translocation of NF-κB p65 from the cytoplasm to the nucleus. The LCY12 also increased specific intestinal microbial communities and short-chain fatty acid (SCFA) production. Altogether, LCY12 oral administration alleviated colitis induced with DSS in mice by improving intestinal barrier function and regulating inflammatory cytokines, SCFA production, and intestinal microbiota.

2.
Microbiol Spectr ; : e0078823, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707448

RESUMO

Anaerobic fungi (AF) inhabit the gastrointestinal tract of ruminants and play an important role in the degradation of fiber feed. However, limited knowledge is available on seasonal dynamics and inter-species differences in rumen AF community in yak and cattle under natural grazing systems. Using the random forests model, the null model, and structural equation model, we investigated the seasonal dynamics and key driving factors of fiber-associated rumen AF in grazing yak and cattle throughout the year on the Qinghai-Tibet Plateau (QTP). We found that the richness and diversity of rumen AF of grazing yak and cattle in cold season were significantly higher than those in warm season (P < 0.05). We identified 12 rumen AF genera, among which , Cyllamyces, and Orpinomyces were predominant in the rumen of both grazing yak and cattle. LEfSe and random forest analysis showed that Feramyces, Tahromyces, and Buwchfawromyces were important seasonal indicator of rumen AF in grazing yak (P < 0.05), and Caecomyces, Cyllamyces, and Piromyces in grazing cattle (P < 0.05). Null model analysis revealed that the dynamic changes of rumen AF community structure were mainly affected by deterministic factors. Notably, mantel test and structural equation model revealed that forage physical-chemical properties, including dry matter (DM), neutral detergent fiber (NDF), and hemicellulose contents (HC) were the key factors driving the seasonal variations of the rumen AF community (P < 0.05). The results revealed that forage lignocellulose was probably an important factor affecting the seasonal dynamics and inter-species differences of the rumen AF community under natural grazing conditions. IMPORTANCE The seasonal dynamics of rumen anaerobic fungi in nature grazing yak and cattle were determined during cold and warm seasons based on pasture nutritional quality and environmental data sets. The main driving factors of anaerobic fungi in yak and cattle rumen were explored by combining random forest and structural equation models. In addition, the dynamic differences in the composition of the anaerobic fungi community in the yak and cattle in different seasons were characterized. It was found that some rumen anaerobic fungi have contributed to high fiber degradation rate in yak. These novel findings improve our understanding of the association of environmental and dietary seasonal variations with anaerobic fungal community, facilitating yak adaptation to high altitude.

3.
Front Plant Sci ; 13: 1020033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507381

RESUMO

Pasture biomass and quality are dependent on herbivore grazing and precipitation, but the responses of vegetation to the interactive effects of climate and grazing regimes remain unclear. We conducted an eight-year sheep grazing experiment with 4 stocking rates (0, 3.5, 5.5, and 7.5 sheep/ha) in an alpine meadow of the northeastern Tibetan Plateau. The above-ground net primary productivity (ANPP) and forage nutritional value (FNV) of four dominant species (Poa annua, Kobresia humilis, Astragalus adsurgens and Potentilla fruticosa) were measured during a wet year (360 mm rainfall) and a drought year (216 mm rainfall). The FNV was used as indicator of forage quality and was calculated from the crude protein (CP) content, in vitro true dry matter digestibility (IVTD), metabolic energy (ME) yield, and neutral detergent fiber (NDF) content of the plant. The stocking rate explained a minimum of 76% of the variations of ANPP, and the precipitation sub-additive effect for ANPP ranged from 5% to 12%. The interaction of sheep stocking rate and precipitation affected ANPP of the 4 species, except for P. fruticosa. The FNV of the pasture increased with increasing grazing pressure, but ANPP and forage nutritional yield (FNY) decreased. In calculating FNY, the increase in FNV did not compensate for the decrease in ANPP. In non-grazed plots, the CP yield declined sharply (18%-55%) in response to drought, but there was no effect on ME yield. The interaction between stocking rate and precipitation affected forage quality of the 4 plant species differently. The grassland ANPP and FNY could be maintained at a grazing intensity of 3.5 sheep/ha in wet and dry years. Our results highlight that stocking density affects pasture ANPP and FNV, and is contingent on rainfall.

4.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232464

RESUMO

The intestinal barrier is vital for preventing inflammatory bowel disease (IBD). The objectives of this study were to assess whether the Lactobacillus rhamnosus CY12 could alleviate oxidative stress, inflammation, and the disruption of tight junction (TJ) barrier functions induced by lipopolysaccharide (LPS), and therefore to explore the potential underlying molecular mechanisms. Our results showed that LPS-induced Cancer coli-2 (Caco-2) cells significantly increased the levels of reactive oxygen species (ROS), lactate dehydrogenase, inflammatory cytokines interleukin-1ß, interleukin-6, interleukin-8, and tumor necrosis factor-α (IL-1ß, IL-6, IL-8, and TNF-α), and the cell apoptosis rate while decreasing the levels of TJ proteins occludin, zonula occludens-1 (ZO-1), and claudin and antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase(CAT, SOD, and GSH-Px) (p < 0.05). However, Lactobacillus rhamnosus CY12 could relieve cytotoxicity, apoptosis, oxidative stress, and pro-inflammatory cytokine expressions, and also inhibit the Toll-like receptor 4/nuclear factor kappa-B(TLR4/NF-κB) signaling pathway. Furthermore, the gene expression of antioxidant enzymes, as well as the mRNA and protein expressions of TJ proteins, was improved. Particularly, the concentration of 108 cfu/mL significantly prevented the inflammatory injury induced by LPS in Caco-2 cells (p < 0.05). These findings support a potential application of Lactobacillus rhamnosus CY12 as a probiotic to prevent LPS-induced intestinal injury and treat intestinal barrier dysfunction.


Assuntos
Lacticaseibacillus rhamnosus , Proteínas de Junções Íntimas , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células CACO-2 , Catalase/metabolismo , Claudinas/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lactato Desidrogenases/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Ocludina/genética , Ocludina/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Proteínas de Junções Íntimas/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
BMC Microbiol ; 22(1): 213, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071396

RESUMO

BACKGROUND: Rumen microbes play an important role in ruminant energy supply and animal performance. Previous studies showed that the rumen microbiome of Mongolian cattle has adapted to degrade the rough forage to provide sufficient energy to tolerate the harsh desert ecological conditions. However, little is known about the succession of rumen microbes in different developmental stages of post-weaning Mongolian cattle. METHODS: Here, we examined the succession of the rumen microbial composition and structure of 15 post-weaning Mongolian cattle at three developmental stages i.e., 5 months (RM05), 18 months (RM18) and, 36 months (RM36) by using the 16S rRNA gene sequencing method. RESULTS: We did not find any age-dependent variations in the ruminal concentrations of any volatile fatty acid (VFA) of Mongolian cattle. The diversity of the rumen bacterial community was significantly lower in RM05 group, which reached to stability with age. Bacteroidetes and Firmicutes were the two dominant phyla among all age groups. Phylum Actinobacteria was significantly higher in RM05 group, phyla Spirochaetes, and Tenericutes were highly abundant in RM18 group, and phyla Proteobacteria and Epsilonbacteraeota were enriched in RM36 group. Genera Prevotella_1, Bacteroides, and Bifidobacterium were abundant in RM05 group. The short chain fatty acid (SCFA) producing bacteria Rikenellaceae_RC9_gut_group showed high abundance in RM18 group and fiber degrading genus Alloprevotella was highly abundant in RM36 group. Random forest analysis identified Alloprevotella, Ileibacterium, and Helicobacter as important age discriminatory genera. In particular, the genera Ruminococcaceae_UCG-005, Bacteroides, Saccharofermentans, and Fibrobacter in RM05, genera [Eubacterium] coprostanoligenes_group, Erysipelotrichaceae_UCG-004, Helicobacter, Saccharofermentans, Papillibacter, and Turicibacter in RM18, and genera Rikenellaceae_RC9_gut_group, Lachnospiraceae_AC2044_group, and Papillibacter in RM36 showed the top interactions values in the intra-group interaction network. CONCLUSIONS: The results showed that rumen microbiota of Mongolian cattle reached to stability and maturity with age after weaning. This study provides some theoretical evidence about the importance of functional specific rumen bacteria in different age groups. Further studies are needed to determine their actual roles and interactions with the host.


Assuntos
Bactérias , Rúmen , Animais , Bacteroidetes/genética , Bovinos , Firmicutes/genética , RNA Ribossômico 16S/genética , Rúmen/microbiologia , Análise de Sequência de DNA , Desmame
6.
Front Microbiol ; 13: 957341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935190

RESUMO

Dietary changes have significant effects on gut microbiota and host health. Weaning is an important stage of dietary change in ruminants. The gastrointestinal tract (GIT) microbiota of calf in the early life undergo some changes, and the plasticity of the calf is beneficial to cope with these changes and challenges. However, the complex development of hindgut microorganisms in post-weaning ruminants is not fully understood. In this study, we used 16S rRNA sequencing and untargeted metabolomic analysis to determine the cecal and colonic bacterial community and associated metabolome of Mongolian cattle at age of the 5th (at weaning), 18th, and 36th months. Moreover, the maturation patterns of the hindgut bacterial community and the dynamic changes of metabolites were also explored. Sequencing results showed that Firmicutes and Bacteroidetes were the dominant phyla in the cecum and colon. The linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed bacterial features that were stage-specific in the cecum and colon. The relative abundance of Ruminococcaceae, a microbial family related to fiber degradation, gradually increased with age in the cecum, while the relative abundance of Bacteroides and Alistipes, which are related to immunity, gradually increased in the colon. The differential metabolites in the cecum and colon were mainly enriched in steroid hormone biosynthesis, primary bile acid biosynthesis, and arachidonic acid metabolism between different ages of Mongolian cattle after weaning. Consequently, this dual omics analysis provided important information on the changes in microbial and metabolite interactions in Mongolian cattle after weaning. The microorganisms and metabolites in the cecum and colon further enhanced the abiotic stress resistance of Mongolian cattle to the harsh environment. The information obtained in this study is of great significance for future strategies of cecum and colon microbiota regulation of post-weaning Mongolian cattle in the harsh Mongolian Plateau ecosystem.

7.
Front Microbiol ; 13: 916735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733965

RESUMO

The Qinghai-Tibetan Plateau offers one of the most extreme environments for yaks (Bos grunniens). Although the genetic adaptability of yak and rumen metagenomes is increasingly understood, the relative contribution of host genetics and maternal symbiotic microbes throughout early intestinal microbial successions in yaks remains elusive. In this study, we assessed the intestinal microbiota succession of co-inhabiting yak and cattle (Bos taurus) calves at different weeks after birth as well as the modes of transmission of maternal symbiotic microbes (i.e., rumen fluid, feces, oral cavity, and breast skin) to their calves' intestinal microbiota colonization. We found that the fecal microbiota of yak and cattle calves after birth was dominated by members of the families Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae. The Source Tracker model revealed that maternal fecal microbes played an important role (the average contribution was about 80%) in the intestinal microbial colonization of yak and cattle calves at different weeks after birth. Unlike cattle calves, there was no significant difference in the fecal microbiota composition of yak calves between 5 and 9 weeks after birth (Wilcoxon test, P > 0.05), indicating that yak may adapt to its natural extreme environment to stabilize its intestinal microbiota composition. Additionally, our results also find that the intestinal microbial composition of yak and cattle calves, with age, gradually tend to become similar, and the differences between species gradually decrease. The findings of this study are vital for developing strategies to manipulate the intestinal microbiota in grazing yaks and cattle for better growth and performance on the Qinghai-Tibetan Plateau.

8.
Front Vet Sci ; 9: 864057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692295

RESUMO

The perinatal period has an important impact on the health of ruminants, and the imbalance of udder skin microbiota might be an important inducement of bovine mastitis. However, it is not clear how the perinatal period affects the microbial structure and stability of the udder skin of yak and cattle. Here, we used 16S rRNA gene high-throughput sequencing to analyze the udder skin microbiota of yak and cattle during the perinatal period. We found that the diversity and richness of microbiota of bovine udder skin during 1-2 weeks postpartum were significantly lower than those in the 1-2 weeks prenatal and 1-month postpartum period (Wilcoxon, p < 0.05). Besides, we found sharing of 2,533 OTUs in the udder skin microbiota of yak and cattle during the perinatal period, among which the core microbiota at the genera level was mainly composed of Staphylococcus, Moraxella, and Acinetobacter. However, the genus Acinetobacter was significantly abundant in the udder skin of cattle during 1-2 weeks postpartum. The NMDS and LEfSe results showed that the perinatal period had more effects on the composition and stability of microbial community in the udder skin of cattle compared to yak, particularly during 1-2 weeks postpartum. In addition, the average content of total whey proteins and immunoglobulin G of whey protein were significantly higher in the yak colostrum when compared to those found in the cattle (p < 0.05). In conclusion, the structure of udder skin microbiota of yak during the perinatal period is more stable than that of cattle in the same habitat, and 1-2 weeks postpartum may be a potential window period to prevent cattle mastitis.

9.
Front Vet Sci ; 9: 791245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529830

RESUMO

Variation in food and diet shapes the diversity of the gut microbiota of ruminants. The present study investigated the microbial diversity in the fecal microbiota of yaks reared under natural grazing and feedlot system. A total of 48 domestic yaks with an average age of 7.5 years were selected from two different grazing habitats: one group grazed on natural pasture (grazing yaks-GY) while the other group was fed fodder and concentrate (feedlot yaks-FY). Crude protein, non-fiber carbohydrate, hemicelluloses, and digestible dry matter contents of natural pastures were higher than those in the feedlot. The lower insoluble fiber contents were found in grazing land. The 16S rRNA gene sequencing revealed 675 and 348 unique operational taxonomic units (OTUs) in the GY and FY, respectively, in addition to 1,778 common OTUs. Overall, a total of 9,891 OTUs were identified as a whole, of which 6,160 OTUs were from GY and 3,731 were from FY. Shannon index analysis revealed a higher bacterial diversity in GY than FY. At the phylum level, Firmicutes were dominant bacterial taxa in both groups. The relative abundance of Firmicutes in GY (56% ± 0.05) was higher than in FY (41% ± 0.08). At the family level, GY had a significantly higher abundance of Ruminococcaceae (p < 0.001) and Rikenellaceae (p < 0.001) than FY, but FY had a significantly higher abundance of Prevotellaceae than GY (p < 0.001). At the genus level, abundances of Faecalibacterium, Alloprevotella, and Succinivibrio were higher in FY than in GY. This study presents novel information on fecal bacterial composition and diversity in yaks reared under two different production systems.

10.
Antioxidants (Basel) ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943033

RESUMO

With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.

11.
Front Vet Sci ; 8: 718036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631849

RESUMO

The effects of different dietary energy levels on the ruminal bacterial population, selected meat quality indices, and their relationship in yak longissimus thoracis (LT) muscle were assessed in this study. A total of 15 castrated yaks were randomly assigned to three groups with low- (NEg: 5.5 MJ/Kg, LE), medium- (NEg: 6.2 MJ/Kg, ME), and high- (NEg: 6.9 MJ/Kg, HE) dietary energy levels and occurred in the cold season (March to May). All yaks from each treatment group were humanely slaughtered and sampled on the day of completion of their feeding treatment. The results showed that the water content and crude fat levels of the LT muscle were markedly elevated in the HE group (P < 0.05), while the shear force was drastically reduced (P = 0.001). Methionine, aspartic acid, and glycine levels in the LT muscle were higher in the LE group compared with the ME and HE groups (P < 0.05). The glutamic acid level in the ME group was greater in comparison to the LE and HE groups (P < 0.05), while the histidine level in the ME group was higher than that in the HE group (P < 0.05). Additionally, the HE diet significantly elevated (P < 0.05) the abundance of carbohydrate metabolism-associated bacteria including Prevotella_1, Lachnospiraceae_NK4A136_group, U29_B03, Ruminiclostridium_6, and Ruminococcaceae_UCG_013 in the rumen. The results of the Spearman's rank correlation analysis showed that the abundance of uncultured_bacterium_f_vadinBE97 and uncultured_bacterium_f_Lachnospiraceae showed a significant influence on the indicator of IMF and SF. In conclusion, a high dietary energy level improved the meat quality in the LT muscle of yak mainly by increasing the relative abundance of ruminal amylolytic bacteria to provide substrates for fatty acid synthesis.

12.
Biology (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439962

RESUMO

Previous studies have demonstrated that nutrition plays a crucial part in improving the reproductive potential of farm animals; however, there is currently no research on the transcription and expression profiling of genes in yaks under different feeding conditions. Therefore, this research was planned to compare the transcription and expression profiles of TEX11, ESRα, and BOLL in yaks under natural grazing with concentrate supplementation (NG + CS) and NG without concentrate supplementation. The transcription and expressional levels of TEX11, ESRα, and BOLL mRNA were explored from the testes of yaks using qPCR, Western blotting, immunofluorescence, and immunochemistry. The results of the qPCR illustrated that the transcription levels of TEX11, ESRα, and BOLL were upregulated in the NG + CS group compared to those in the NG group. Moreover, the results of the immunochemistry and immunofluorescence showed that the expression of TEX11, ESRα, and BOLL proteins increased after concentrate supplementation. Meanwhile, ESRα protein levels were lower in the testes and epididymides of yaks in the NG group than in those in the NG + CS group. Similarly, BOLL protein expression was higher in the testes and epididymides of the NG + CS group, but its expression was lower in the epididymides of the NG group. Furthermore, Western blotting showed that the molecular weights of ESRα and BOLL proteins were 64 kDa and 31 kDa, respectively. Finally, in the conclusion we summarize how a proper level of dietary energy supplementation can improve the reproductive potential of yaks by upregulating genes related to reproduction.

13.
PeerJ ; 9: e11520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178446

RESUMO

This study aimed to explore the rumen bacterial community of yak in response to dietary supplements during the cold season. In addition, the rumen fermentation products were also analyzed. Twenty-one female domestic yaks were randomly divided into three groups i.e., pure grazing (GG) group, grazing plus oats hay supplement (OG) group, and grazing plus concentrate supplement group (CG). Rumen contents were collected after 90 days to assess rumen fermentation parameters and bacterial community. The GC group presented higher concentrations of ammonia nitrogen (P < 0.001), and total volatile fatty acids (TVFA) (P < 0.001), and lower rumen pH (P < 0.001) compared to other experimental groups. The CG group displayed higher proportions of propionate, butyrate, isobutyrate, and isovalerate while lower A/P ratio compared to other experimental groups. Shannon, Chao1, and ACE values were significantly lower in the OG group compared to GG and CG groups. Anosim test showed significant differences in bacterial community structure between groups but the PCA plot was not very informative to see these differences. Bacteroidetes, Proteobacteria, and Firmicutes were the three dominant phyla in all groups. The genera Oscillospira was more abundant in GG and OG groups. Higher relative abundance of Ruminococcus and Clostridium was observed in the GG group, while Ruminobacter, Corynebacterium, and Selenomonas were more abundant in the CG group. These findings will help in improving our understanding of rumen bacteria in yaks in response to changes in diet.

14.
J Environ Manage ; 287: 112334, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735676

RESUMO

Livestock production is the major livelihood for a growing local population on the Tibetan plateau. However, government policy is to reduce the number of livestock due to the large quantities of greenhouse gasses (GHG), in particular methane, produced by ruminants and the degradation of the grasslands. For this policy to be effective, with little effect on livelihoods, there should be a decoupling of GHG emissions from economic growth of livestock products. This study examined the synergetic effects of policies, extreme climate events and GHG emissions from livestock at the headwater region of the Yellow River since 1980. Optimization models of GHG emissions efficiency and drivers were developed and parameterized. Trade-offs between GHG emissions from livestock and economic growth from livestock, determined by the decoupling model, showed that from 1980 to 2015: 1) the GHG emissions decreased by 39%; (2) CH4 emissions from livestock decreased by 33%, and yaks emitted the most (accounted for 99.6%) among livestock; (3) N2O emissions decreased by 34%; (4) trade-offs between livestock GHG emissions and grassland uptake indicated that the grazing livestock system functioned as a net carbon sink; (5) the efficiency factor, especially technical efficiency, was the main driver of GHG emissions; and (6) GHG emissions from livestock were in a decoupling state from economic growth from livestock. However, decoupling has not been stable as inter-annual fluctuations have been large mainly due to extreme climatic events, such as snowstorm disasters, which indicates that the grazing system was still relatively fragile. The GHG emissions can be reduced further by mitigating CH4 emissions, and enhancing CO2 sequestration on grazed pastureland. The ongoing transformation of livestock industry development on the Tibetan plateau is associated with uncertainty under the background of global GHG mitigation.


Assuntos
Gases de Efeito Estufa , Animais , Desenvolvimento Econômico , Efeito Estufa , Gases de Efeito Estufa/análise , Gado , Metano/análise , Óxido Nitroso/análise , Tibet
15.
Front Cell Dev Biol ; 9: 759521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111749

RESUMO

Animals have adapted behavioral and physiological strategies to conserve energy during periods of adverse conditions. Hepatic glucose is one such adaptation used by grazing animals. While large vertebrates have been shown to have feed utilization and deposition of nutrients-fluctuations in metabolic rate-little is known about the regulating mechanism that controls hepatic metabolism in yaks under grazing conditions in the cold season. Hence, the objective of this research was to integrate transcriptomic and metabolomic data to better understand how the hepatic responds to chronic nutrient stress. Our analyses indicated that the blood parameters related to energy metabolism (glucose, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, lipoprotein lipase, insulin, and insulin-like growth factor 1) were significantly (p < 0.05) lower in the cold season. The RNA-Seq results showed that malnutrition inhibited lipid synthesis (particularly fatty acid, cholesterol, and steroid synthesis), fatty acid oxidation, and lipid catabolism and promoted gluconeogenesis by inhibiting the peroxisome proliferator-activated receptor (PPAR) and PI3K-Akt signaling pathways. For metabolite profiles, 359 metabolites were significantly altered in two groups. Interestingly, the cold season group remarkably decreased glutathione and phosphatidylcholine (18:2 (2E, 4E)/0:0). Moreover, integrative analysis of the transcriptome and metabolome demonstrated that glycolysis or gluconeogenesis, PPAR signaling pathway, fatty acid biosynthesis, steroid biosynthesis, and glutathione metabolism play an important role in the potential relationship between differential expression genes and metabolites. The reduced lipid synthesis, fatty acid oxidation, and fat catabolism facilitated gluconeogenesis by inhibiting the PPAR and PI3K-Akt signaling pathways to maintain the energy homeostasis of the whole body in the yak, thereby coping with the shortage of forages and adapting to the extreme environment of the Qinghai-Tibetan Plateau (QTP).

16.
Biology (Basel) ; 11(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35053029

RESUMO

BACKGROUND: The gut microbiota plays an important role in the health and production of animals. However, little information is available on the dynamic variations and comparison of intestinal microbiota in post-weaning yak calves living on the QTP. METHODS: We explored the fecal bacterial microbiota succession of yak calves at different months after early weaning (60 d) compared with cattle calves by 16S rRNA gene amplicon sequencing and functional composition prediction. RESULTS: We found no significant difference in blood biochemical parameters related to glucose and lipid metabolism between yaks and calves in different months after weaning. The core fecal bacterial microbiota from both species of calves was dominated by Ruminococcaceae, Rikenellaceae, and Bacteroidaceae. The fecal microbial community has a great alteration within the time after weaning in both cattle and yak calves, but cattle showed a larger change. After five months, the microbiota achieves a stable and concentrated state. This is also similar to the functional profile. CONCLUSIONS: Based on the exploration of dynamic changes in the fecal microbiota at an early stage of life, our results illustrated that there were no negative effects of intestinal microbiota succession on yak calves when early weaning was employed.

17.
Front Microbiol ; 11: 625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670204

RESUMO

The microbial community of the yak (Bos grunniens) rumen plays an important role in surviving the harsh Tibetan environment where seasonal dynamic changes in pasture cause nutrient supply imbalances, resulting in weight loss in yaks during the cold season. A better understanding of rumen microbiota under different feeding regimes is critical for exploiting the microbiota to enhance feed efficiency and growth performance. This study explored the impact of different dietary energy levels on feed efficiency, rumen fermentation, bacterial community, and abundance of volatile fatty acid (VFA) transporter transcripts in the rumen epithelium of yaks. Fifteen healthy castrated male yaks were divided into three groups and fed with low (YL), medium (YM), and high energy (YH) levels diet having different NEg of 5.5, 6.2, and 6.9 MJ/kg, respectively. The increase in feed efficiency was recorded with an increase in dietary energy levels. The increase in dietary energy levels decreased the pH and increased the concentrations of acetate, propionate, butyrate, and valerate in yak rumens. The increase in the mRNA abundance of VFA transporter genes (MCT1, DRA, PAT1, and AE2) in the rumen epithelium of yaks was recorded as dietary energy level increased. High relative abundances of Firmicutes and Bacteroidetes were recorded with the increase in dietary energy levels. Significant population shifts at the genus level were recorded among the three treatments. This study provides new insights into the dietary energy-derived variations in rumen microbial community.

18.
Sci Total Environ ; 742: 140574, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721731

RESUMO

Environmental factors that drive vegetation change in the Three River Headwater Region (TRHR) on Qinghai-Tibetan Plateau are largely unknown. In particular, the response of alpine grasslands in the TRHR to changing climate and ecological compensations is still poorly understood. Here, we present data on vegetation trends of the TRHR from 1982 to 2015 by employing multiple high-resolution satellite data to determine the mean annual normalized difference vegetation index (NDVI). In addition, spatio-temporal changes in climate were monitored by long-term climate data collection and by using the distributed modeling system. It emerged that: 1) there was a weak increasing trend, albeit not significant, in overall TRHR NDVI, ranging between 0.23 and 0.27; whereas, grassland NDVI ranged between 0.43 and 0.50, and displayed a significant (r2adj = 0.46; P = 0.004) linear increase with year; 2) annual average temperature was below 0 °C and increased linearly (r2adj = 0.60; P = 0.01) at a rate of 0.06 °C/yr from 2000 to 2015, which was almost four times faster than the rate of global warming; and 3) average rainfall was 493 mm/yr, with no significant yearly trend. In conclusion, climate warming enhanced vegetation growth and recovery in the TRHR since 2000; whereas, rainfall did not show a trend. However, vegetation changes on the spatial scale demonstrated zoning and segmentation effects. Consequently, for restoration of degraded lands in the TRHR, effective one-to-one ecological conservation projects, which are particular to an eco-fragile area, should be implemented. In addition, these results are important for regional planning of livestock stocking rates and animal husbandry systems, which can have great impact on the livelihood of the people in the area.


Assuntos
Pradaria , Rios , China , Clima , Mudança Climática , Ecossistema , Temperatura
19.
Genes (Basel) ; 10(11)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671664

RESUMO

Testis-specific genes play an essential part in the centromere union during meiosis in male germ cells, spermatogenesis, and in fertility. Previously, there was no research report available on the expression pattern of SYCP3 and TSEG2 genes in different ages of yaks. Therefore, the current research compared the expression profiling of SYCP3 and TSEG2 genes in testes of yaks. The expression pattern of SYCP3 and TSEG2 mRNA was investigated using qPCR, semi-quantitative PCR, western blot, immunohistochemistry, and molecular bioinformatics. Our findings displayed that SYCP3 and TSEG2 genes were prominently expressed in the testicles of yaks as compared to other organs. On the other hand, the protein encoded by yak SYCP3 contains Cor1/Xlr/Xmr conserved regions, while the protein encoded by yak TSEG2 contains synaptonemal complex central element protein 3. Additionally, multiple alignments sequences indicated that proteins encoded by Datong yak SYCP3 and TSEG2 were highly conserved among mammals. Moreover, western blot analysis specified that the molecular mass of SYCP3 protein was 34-kDa and TSEG2 protein 90-kDa in the yak. Furthermore, the results of immunohistochemistry also revealed the prominent expression of these proteins in the testis of mature yaks, which indicated that SYCP3 and TSEG2 might be essential for spermatogenesis, induction of central element assembly, and homologous recombination.


Assuntos
Bovinos/genética , Espermatogênese/genética , Complexo Sinaptonêmico/genética , Animais , Clonagem Molecular , Células Germinativas/metabolismo , Masculino , Meiose , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Maturidade Sexual/genética , Complexo Sinaptonêmico/metabolismo , Testículo/metabolismo
20.
Animals (Basel) ; 9(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146500

RESUMO

The IZUMO1 gene has promising benefits for the national development of novel non-hormonal contraceptives and in the treatments of fertility. Understanding the function of IZUMO1, its mRNA, and protein expression is critical to gain insight into spermatogenesis and promote sperm-egg fusion during reproduction of Datong yak. Therefore, we estimated the IZUMO1 gene expression in different ages of Datong yak by using semi quantitative PCR, qPCR, and western blotting. The results of the qPCR, semi-quantitative PCR and western blotting revealed that the expression level of IZUMO1 mRNA was significantly (p < 0.05) higher in the testis of 30 months and 6 years old followed by 18 and 6 months old Datong yak, respectively. We also predicted secondary and tertiary protein structure of IZUMO1 by using bioinformatics software that the revealed presence of a signal peptide, Izumo domain, immunoglobulin (Ig) like domain, and transmembrane region. Moreover, immunostaining analysis also elucidated that IZUMO1 was more prominent in the testis of 30 months and 6 years old yak, which represented that the IZUMO1 gene expression might be higher during the peak breeding ages (6 to 7 years) of the yak, and play a potential role in spermatogenesis, fertility, and testicular development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...