Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oman Med J ; 38(3): e515, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37313249

RESUMO

Branchial cleft cysts generally occur unilaterally at the lateral aspect of the neck. Bilateral branchial cysts are rare and may have familial associations. We report a rare case of non-syndromic bilateral branchial cyst in a 23-year-old woman who presented with chronic bilateral, progressively enlarging painless neck swellings. Complete surgical excision of the bilateral cyst was done. A histopathological examination confirmed the diagnosis. Precise diagnosis with early and complete surgical excision of branchial cysts may help prevent recurrence and other complications.

2.
Iran J Otorhinolaryngol ; 34(122): 181-185, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35655544

RESUMO

Introduction: An aberrant carotid artery has distinct terms and may exhibit a submucosal mass in the posterior pharyngeal wall. While it is primarily asymptomatic, an extreme aberrancy doubles the risk of dissection, a cerebrovascular accident (CVA) and an injury intraoperatively. Case Report: We report a case of 'kissing carotid artery' in a 65-year-old lady who presented with a foreign body sensation felt in the throat for one week. A finding of flexible nasopharyngolaryngoscopy (FNPLS) showed a bilateral paramedian retropharyngeal pulsating mass. Radiological examinations, including Computed Tomography (CT) of the neck and an angiogram, revealed an aberrant course of bilateral carotid arteries. In view of no malignancy and vascular malformations, there was no further intervention done, and the patient was subjected to yearly surveillance. Conclusion: Retropharyngeal carotid arteries are clinically significant anatomic variants. Such anomalies are potentially life-threatening and a risk factor for a severe hemorrhage during the simplest and commonly performed transoral surgeries. Thus, thorough perioperative assessment with accurate imaging techniques and studies are required to evaluate these anomalies and may avoid any disastrous complications.

3.
Proc Natl Acad Sci U S A ; 111(18): E1823-32, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24757057

RESUMO

The capacity to repair different types of DNA damage varies among individuals, making them more or less susceptible to the detrimental health consequences of damage exposures. Current methods for measuring DNA repair capacity (DRC) are relatively labor intensive, often indirect, and usually limited to a single repair pathway. Here, we describe a fluorescence-based multiplex flow-cytometric host cell reactivation assay (FM-HCR) that measures the ability of human cells to repair plasmid reporters, each bearing a different type of DNA damage or different doses of the same type of DNA damage. FM-HCR simultaneously measures repair capacity in any four of the following pathways: nucleotide excision repair, mismatch repair, base excision repair, nonhomologous end joining, homologous recombination, and methylguanine methyltransferase. We show that FM-HCR can measure interindividual DRC differences in a panel of 24 cell lines derived from genetically diverse, apparently healthy individuals, and we show that FM-HCR may be used to identify inhibitors or enhancers of DRC. We further develop a next-generation sequencing-based HCR assay (HCR-Seq) that detects rare transcriptional mutagenesis events due to lesion bypass by RNA polymerase, providing an added dimension to DRC measurements. FM-HCR and HCR-Seq provide powerful tools for exploring relationships among global DRC, disease susceptibility, and optimal treatment.


Assuntos
Dano ao DNA , Reparo do DNA , Técnicas Genéticas , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Reparo de Erro de Pareamento de DNA , Citometria de Fluxo , Genes Reporter , Guanina/análogos & derivados , Guanina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutagênese , Plasmídeos/genética , Análise de Sequência de RNA , Transcrição Gênica , Transfecção
4.
Cancer Biol Ther ; 10(10): 1033-40, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20818173

RESUMO

Primary effusion lymphoma (PEL) is an aggressive form of lymphoma that is associated with infection by Kaposi's sarcoma-associated herpesvirus (KSHV). One of the KSHV genes expressed in PEL cells is K13, a potent activator of the NF-κB pathway. K13 transgenic mice develop lymphomas, but after a long period of latency. A possible candidate that could cooperate with K13 in the development of PEL is c-Myc, whose expression is frequently dysregulated in PEL cells. To study the cooperative interaction between K13 and c-Myc in the pathogenesis of PEL, we crossed the K13 transgenic mice to iMyc(Eµ) transgenic mice that overexpress Myc. We report that lymphomas in the K13/iMyc(Eµ) double transgenic mice developed with shorter latency and were histologically distinct from those observed in the iMyc(Eµ) mice. Lymphomas in the K13/iMyc(Eµ) mice also lacked the expression of B- and T-cell markers, thus resembling the immunophenotype of PEL. The accelerated development of lymphoma in the K13/iMyc(Eµ) mice was associated with increased expression of K13, elevated NF-κB activity and decrease in apoptosis. Taken collectively, our results demonstrate a cooperative interaction between the NF-κB and Myc pathways in lymphomagenesis.


Assuntos
Apoptose , Herpesvirus Humano 8/genética , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/patologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Proteínas Virais/fisiologia , Animais , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Citometria de Fluxo , Técnicas Imunoenzimáticas , Linfoma de Efusão Primária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Transfecção
5.
PLoS Genet ; 6(3): e1000871, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20221251

RESUMO

Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV-induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPF(R153P)) were compared to an XP-causing mutation (XPF(R799W)) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPF(R153P)-YFP expressed in Xpf mutant cells. In addition, microinjection of XPF(R153P)-ERCC1 into the nucleus of XPF-deficient human cells restored nucleotide excision repair of UV-induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell's capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Xeroderma Pigmentoso/enzimologia , Substituição de Aminoácidos/genética , Animais , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Imunofluorescência , Humanos , Mutação/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia
6.
Mol Cell Biol ; 28(16): 5082-92, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18541667

RESUMO

ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and gammaH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1(-/-) Ku86(-/-) fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3' overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Animais , Antígenos Nucleares/metabolismo , Linhagem Celular Transformada , Sobrevivência Celular/efeitos da radiação , Senescência Celular/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/deficiência , Perda do Embrião/metabolismo , Embrião de Mamíferos/citologia , Endonucleases/deficiência , Fibroblastos/enzimologia , Fibroblastos/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Células HeLa , Histonas/metabolismo , Humanos , Autoantígeno Ku , Camundongos , Plasmídeos/genética , Radiação Ionizante , Análise de Sequência de DNA
7.
Nature ; 444(7122): 1038-43, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17183314

RESUMO

XPF-ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic DNA interstrand crosslinks. Mild mutations in XPF cause the cancer-prone syndrome xeroderma pigmentosum. A patient presented with a severe XPF mutation leading to profound crosslink sensitivity and dramatic progeroid symptoms. It is not known how unrepaired DNA damage accelerates ageing or its relevance to natural ageing. Here we show a highly significant correlation between the liver transcriptome of old mice and a mouse model of this progeroid syndrome. Expression data from XPF-ERCC1-deficient mice indicate increased cell death and anti-oxidant defences, a shift towards anabolism and reduced growth hormone/insulin-like growth factor 1 (IGF1) signalling, a known regulator of lifespan. Similar changes are seen in wild-type mice in response to chronic genotoxic stress, caloric restriction, or with ageing. We conclude that unrepaired cytotoxic DNA damage induces a highly conserved metabolic response mediated by the IGF1/insulin pathway, which re-allocates resources from growth to somatic preservation and life extension. This highlights a causal contribution of DNA damage to ageing and demonstrates that ageing and end-of-life fitness are determined both by stochastic damage, which is the cause of functional decline, and genetics, which determines the rates of damage accumulation and decline.


Assuntos
Dano ao DNA , Progéria/genética , Progéria/fisiopatologia , Somatotrofos/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Linhagem Celular , Reparo do DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Endonucleases/deficiência , Endonucleases/genética , Regulação da Expressão Gênica , Hormônio do Crescimento/antagonistas & inibidores , Hormônio do Crescimento/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Camundongos , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA