Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nanotechnology ; 35(28)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38574464

RESUMO

The discovery of novel electrode materials based on two-dimensional (2D) structures is critical for alkali metal-ion batteries. Herein, we performed first-principles computations to investigate functionalized MXenes, Mo2BT2(T = O, S), which are also regarded as B-based MXenes, or named as MBenes, as potential anode materials for Li-ion batteries and beyond. The pristine and T-terminated Mo2BT2(T = O, S) monolayers reveal metallic character with higher electronic conductivity and are thermodynamically stable with an intrinsic dipole moment. Both Mo2BO2and Mo2BS2monolayers exhibit high theoretical Li/Na/K storage capacity and low ion diffusion barriers. These findings suggest that functionalized Mo2BT2(T = O, S) monolayers are promising for designing viable anode materials for high-performance alkali-ion batteries.

2.
Dalton Trans ; 53(8): 3785-3796, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38305085

RESUMO

A significant problem in the area of rechargeable alkali ion battery technologies is the exploration of anode materials with overall high specific capacities and superior physical properties. By using first-principles calculations, we have determined that monolayer TiSi2N4 is precisely such a potential anode candidate. Its demonstrated dynamic, thermal, mechanical, and energetic stabilities make it feasible for experimental realization. An important benefit of the electrode conductivity is that the electronic structure reveals that the pristine system experiences a change from a semiconductor to a metal throughout the entire alkali adsorption process. What's more interesting is that monolayer TiSi2N4 can support up to double-sided 3-layer ad-atoms, resulting in extremely high theoretical capacities for Li, Na, Mg, and K of 1004, 854, 492 and 531 mA h g-1 and low average open-circuit voltages of 0.55, 0.25, 0.55, and -1.3 V, respectively. Alkali diffusion on the surface has been demonstrated to occur extremely quickly, with migration energy barriers for Li, Na, Mg, and K as low as 0.25, 0.14, 0.10, and 0.07 eV, respectively. The results reveal that the migration barrier energy is the lowest for Li and Mg from path-2 and Na and K from path-1. Overall, these findings suggest that monolayer TiSi2N4 is a suitable anode candidate for use in high-performance and low-cost metal-ion batteries.

3.
ACS Omega ; 9(2): 2457-2467, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250427

RESUMO

This study reports first-principles predictions as well as experimental synthesis of manganese oxide nanoparticles under different conditions. The theoretical part of the work comprised density functional theory (DFT)-based calculations and first-principles molecular dynamics (MD) simulations. The extensive research efforts and the current challenges in enhancing the performance of the lithium-ion battery (LIB) provided motivation to explore the potential of these materials for use as an anode in the battery. The structural analysis of the synthesized samples carried out using X-ray diffraction (XRD) confirmed the tetragonal structure of Mn3O4 on heating at 450 and 550 °C and the cubic structure of Mn2O3 on heating at 650 °C. The structures are found in the form of nanoparticles at 450 and 550 °C, but at 650 °C, the material appeared in the form of a nanoporous structure. Further, we investigated the electrochemical functionality of Mn2O3 and Mn3O4 as anode materials for utilization in LIBs via MD simulations. Based on the investigations of their electrical, structural, diffusion, and storage behavior, the anodic character of Mn2O3 and Mn3O4 is predicted. The findings indicated that 10 lithium atoms adsorb on Mn2O3, whereas 5 lithium atoms adsorb on Mn3O4 when saturation is taken into account. The storage capacities of Mn2O3 and Mn3O4 are estimated to be 1697 and 585 mAh g-1, respectively. The maximum value of lithium insertion voltage per Li in Mn2O3 is 0.93 and 0.22 V in Mn3O4. Further, the diffusion coefficient values are found as 2.69 × 10-9 and 2.65 × 10-10 m2 s-1 for Mn2O3 and Mn3O4, respectively, at 300 K. The climbing image nudged elastic band method (Cl-NEB) was implemented, which revealed activation energy barriers of Li as 0.30 and 0.75 eV for Mn2O3 and Mn3O4, respectively. The findings of the work revealed high specific capacity, low Li diffusion energy barrier, and low open circuit voltage for the Mn2O3-based anode for use in LIBs.

4.
Int J Biol Macromol ; 256(Pt 1): 128422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013075

RESUMO

Alginate hydrogel is highly efficient for water filtration due to its anti-fouling nature and formation of strong hydration membranes. However, poor mechanical properties of alginate hydrogel membrane limit its installation in water treatment. There is a need to enhance mechanical properties of alginate hydrogel membranes using eco-friendly, cost-effective materials and technologies. In this work, hydroentangled non-woven from cotton waste (comber noil) fibers was prepared. This non-woven was immersed in solution of sodium alginate (0.5 %, 1 %, 1.5 %) followed by dipping in calcium chloride solution which resulted in gel formation on and into cotton fibers. The successful formation of gel on non-woven fabric was confirmed through FTIR (Fourier transform infrared spectroscopy) and properties of this composite membrane were analyzed by SEM (Scanning electron microscopy), XRD (X-ray diffraction), DSC (Differential scanning calorimeter), water contact, water flux, oil-water filtration, air permeability, tensile strength, and porosity tests. The results showed that porosity of prepared hydrogel membranes decreased with increasing alginate concentration from 0.5 % to 1.5 % which resulted in decreased water permeation flux from 2655 h-1/m2 to 475 h-1/m2. The prepared membrane has separation efficiencies for the oil-water mixture in the range of 97.5 % to 99.5 %. Moreover, the developed samples also showed significant antibacterial activity as well as improved mechanical properties. The strength of the prepared membrane is in the range of 40 N to 80 N. The developed sodium alginate hydrogel-based non-woven membrane could have potential applications for commercial water filtration systems.


Assuntos
Alginatos , Hidrogéis , Hidrogéis/química , Alginatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cloreto de Cálcio , Antibacterianos
5.
Heliyon ; 9(11): e21513, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964854

RESUMO

This study introduces an innovative chemical retting approach, systematically optimized via Grey relational analysis, to achieve jute fibers that exhibit desirable characteristics of softness, high tensile strength, and suitability for spinning, with a particular focus on their application in the apparel industry. In this study, the effect of alkali treatment (alkali concentration, temperature and duration of retting) on jute fiber's chemical composition and mechanical characteristics was investigated. Jute fibers were treated at three concentrations (5 %, 10 %, 15 %) of alkali, at three different temperature (30 °C, 60 °C, & 90 °C) and for three different retting duration (12 h, 24 h, & 36 h). The surface morphology and crystallinity of fibers were analyzed using optical microscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The fiber linear density and mechanical characteristics were also tested. The multi-response optimization of all the factors and the responses was investigated using the Grey relational analysis. The results showed that the fiber surface morphology and crystallinity increase with an increase in alkali concentration, retting time, and temperature. Chemical retting treatment also improved the fiber linear density and tensile strength. The finest fibers which were obtained in this research had a linear density of 2.18 Tex with a tenacity of 53.02 cN/tex and elongation of 4.54 %. The spinnable jute fibers were achieved after this treatment with excellent characteristics.

6.
Pestic Biochem Physiol ; 196: 105630, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945234

RESUMO

Methuselah (Mth) belongs to the GPCR family B, which regulates various biological processes and stress responses. The previous transcriptome data showed jinggangmycin (JGM)-induced Mthl2 expression. However, its detailed functional role remained unclear in brown planthopper, Nilaparvata lugens Stål. In adult N. lugens, the Mthl2 gene showed dominant expressions, notably in ovaries and fat body tissues. The 3rd instar nymphs treated with JGM increased starvation, oxidative stress, and high temperature (34 °C) tolerance of the adults. On the contrary, under dsMthl2 treatment, completely opposite phenotypes were observed. The lipid synthesis genes (DGAT1and PNPLA3) of both females and males treated with JGM in the nymphal stage were observed with high expressions, while the lipolysis of the Lipase 3 gene was observed with low expressions. The JGM increased triglyceride (TG) content, fat body droplet size, and the number of fat body droplets. The same treatment also increased the Glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities. An increase in the heat shock protein (HSP70 and HSP90) expression levels was also observed under JGM treatment but not dsMthl2. The current study demonstrated the influential role of the Mthl genes, particularly the Mthl2 gene, in modulating the growth and development and stress-responsiveness in N. lugens. Thus, providing a platform for future applied research programs controlling N. lugens population in rice fields.


Assuntos
Hemípteros , Oryza , Animais , Feminino , Masculino , Hemípteros/fisiologia , Transcriptoma , Ovário , Inositol/farmacologia
8.
Environ Sci Pollut Res Int ; 30(48): 105614-105626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37715037

RESUMO

Performance evaluation of drilling fluids is essential for a successful drilling project, as they not only remove drill cuttings but also prevent undesired penetration or outflow of formation fluids by sealing off wellbore walls. However, concerns have been raised about the use of chemical additives in drilling fluids due to their toxicity and non-biodegradability. To this end, agricultural waste materials are recognized as a promising alternative as they are cost-effective, environmentally sustainable, and can be used as a substitute for lost circulation materials. Rice husk ash (RHA) has become popular as an additive due to its renewable characteristics, including its large surface area, silica content, and microporous structure. This research article explores the rheological properties of drilling fluid with RHA as a filter control medium. The results showed that increasing concentrations of RHA in the drilling mud significantly improved its rheology, particularly at higher concentrations (15 and 20 wt.%). The addition of RHA modified the filtration and rheological properties of the drilling mud, resulting in improved plastic viscosity, yield point, density, gel strength, and thixotropy. However, filter loss and mud cake thickness increased at elevated RHA concentrations. Furthermore, the pH test revealed that the mud's properties shifted toward the acidic region as the RHA concentration increased. The results indicate that RHA could be used as a sustainable and cost-effective alternative to conventional chemical additives with a positive environmental impact. This study may also provide valuable insights into the use of RHA in water-based bentonite mud and could serve as a guide for future research in the drilling industry.


Assuntos
Oryza , Agricultura , Bentonita , Filtração , Reologia
9.
Nanoscale Adv ; 5(17): 4598-4608, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37638149

RESUMO

The vertical integration of two-dimensional (2D) materials through weak van der Waals (vdW) interactions is gaining tremendous attention for application in nanotechnology and photovoltaics. Here, we performed first-principles study of the electronic band structure, optical and photocatalytic properties of vertically stacked heterostructures based on boron pnictides BX (X = As, P) and SiS monolayers. Both heterobilayers possess a stable geometry and reveal type I band alignment with a direct band gap, indicating substantial transfer of charge across the junction of the same layer. Interestingly, a redshift is found in the visible light region of the optical absorption spectra of BX-SiS heterobilayers. The comparatively larger hole mobility (14 000 cm2 V-1 s-1) of BP-SiS preferably allows hole conduction in the zigzag-direction. More importantly, the excellent band edge values of the standard redox potential and smaller Gibbs free energy for the adsorption of hydrogen (ΔGH*) make them ideal for performing the hydrogen evolution reaction (HER) mechanism under solar irradiation. These findings offer exciting opportunities for developing next-generation devices based on BX-SiS heterobilayers for promising applications in nanoelectronics, optoelectronic devices and photocatalysts for water dissociation into hydrogen to produce renewable clean energy.

10.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239932

RESUMO

The plant mirid bug Apolygus lucorum is an omnivorous pest that can cause considerable economic damage. The steroid hormone 20-hydroxyecdysone (20E) is mainly responsible for molting and metamorphosis. The adenosine monophosphate-activated protein kinase (AMPK) is an intracellular energy sensor regulated by 20E, and its activity is regulated allosterically through phosphorylation. It is unknown whether the 20E-regulated insect's molting and gene expression depends on the AMPK phosphorylation. Herein, we cloned the full-length cDNA of the AlAMPK gene in A. lucorum. AlAMPK mRNA was detected at all developmental stages, whereas the dominant expression was in the midgut and, to a lesser extent, in the epidermis and fat body. Treatment with 20E and AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AlCAR) or only AlCAR resulted in activation of AlAMPK phosphorylation levels in the fat body, probed with an antibody directed against AMPK phosphorylated at Thr172, enhancing AlAMPK expression, whereas no phosphorylation occurred with compound C. Compared to compound C, 20E and/or AlCAR increased the molting rate, the fifth instar nymphal weight and shortened the development time of A. lucorum in vitro by inducing the expression of EcR-A, EcR-B, USP, and E75-A. Similarly, the knockdown of AlAMPK by RNAi reduced the molting rate of nymphs, the weight of fifth-instar nymphs and blocked the developmental time and the expression of 20E-related genes. Moreover, as observed by TEM, the thickness of the epidermis of the mirid was significantly increased in 20E and/or AlCAR treatments, molting spaces began to form between the cuticle and epidermal cells, and the molting progress of the mirid was significantly improved. These composite data indicated that AlAMPK, as a phosphorylated form in the 20E pathway, plays an important role in hormonal signaling and, in short, regulating insect molting and metamorphosis by switching its phosphorylation status.


Assuntos
Ecdisterona , Muda , Animais , Muda/fisiologia , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcarnitina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo
11.
Nanoscale ; 15(16): 7302-7310, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37014122

RESUMO

Thermoelectric technology holds great promise as a green and sustainable energy solution, generating electric power directly from waste heat. Herein, we investigate the thermoelectric properties of SiPGaS/As van der Waals heterostructures by using computations based on density functional theory and semiclassical Boltzmann transport theory. Our results show that both models of SiPGaS/As van der Waals heterostructures have low lattice thermal conductivity at room temperature (300 K). Applying 4% tensile strain to the models leads to a significant enhancement in the figure of merit (ZT), with model-I and model-II exhibiting ZT improvements of up to 24.5% and 14.8%, respectively. Notably, model-II outperforms all previously reported heterostructures in terms of ZT value. Additionally, we find that the maximum thermoelectric conversion efficiency (η) for model-II at 4% tensile strain reaches 23.98% at 700 K. Our predicted ZTavg > 1 suggests that these materials have practical potential for thermoelectric applications over a wide temperature range. Overall, our findings offer valuable insights for designing better thermoelectric materials.

13.
Int J Biol Macromol ; 241: 124623, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119888

RESUMO

Hydrogels which become increasingly important in the biomedical field are composed of a three-dimensional hydrophilic network. Pure hydrogels are usually weak and brittle; therefore, reinforcements are assimilated into the hydrogel structure to improve the mechanical strength of the hydrogels. However, even if mechanical properties are enhanced, drapability remains an issue. In that regard, natural fiber-reinforced composite hydrogel fibers for wound dressing application are investigated in this study. Kapok and hemp fibers were used as reinforcement to improve the strength of hydrogel fibers. The properties of the prepared composite hydrogel fibers were studied with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimeter (DSC). The effect of alginate concentration and fiber weight percent on the mechanical characteristics and water absorbency was studied. Diclofenac sodium drug was loaded in the hydrogel fibers and investigated the drug release as well as antibacterial characteristics. Both fibers' reinforcement enhanced the strength of the alginate hydrogel fiber, but hemp reinforcement showed better mechanical properties. Kapok reinforcement resulted in a maximum tensile strength of 174 cN (1.24 % elongation) and 432 % exudate absorbency, while hemp reinforcement resulted in 185 cN (1.48 % elongation) and 435 % exudate absorbency. Statistical analysis revealed significant effects of sodium alginate concentration on tensile strength (p-value 0.042) and exudate absorbency (p-value 0.020) and of reinforcement (wt%) on exudate absorbency (p-value 0.043). Therefore, these composite hydrogel fibers with improved mechanical properties are capable of drug release and exhibit antibacterial effectiveness, making them a promising option for use as wound dressings.


Assuntos
Diclofenaco , Hidrogéis , Hidrogéis/química , Diclofenaco/farmacologia , Alginatos/química , Cicatrização , Bandagens , Antibacterianos/farmacologia
14.
RSC Adv ; 13(11): 7436-7442, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36895771

RESUMO

Nowadays, it would be ideal to develop high-performance photovoltaic devices as well as highly efficient photocatalysts for the production of hydrogen via photocatalytic water splitting, which is a feasible and sustainable energy source for addressing the challenges related to environmental pollution and a shortage of energy. In this work, we employ first-principles calculations to investigate the electronic structure, optical properties and photocatalytic performance of novel SiS/GeC and SiS/ZnO heterostructures. Our results indicate that both the SiS/GeC and SiS/ZnO heterostructures are structurally and thermodynamically stable at room temperature, suggesting that they are promising materials for experimental implementation. The formation of SiS/GeC and SiS/ZnO heterostructures gives rise to reduction of the band gaps as compared to the constituent monolayers, enhancing the optical absorption. Furthermore, the SiS/GeC heterostructure possesses a type-I straddling gap with a direct band gap, while the SiS/ZnO heterostructure forms a type-II band alignment with indirect band gap. Moreover, a red-shift (blue-shift) has been observed in SiS/GeC (SiS/ZnO) heterostructures as compared with the constituent monolayers, enhancing the efficient separation of photogenerated electron-hole pairs, thereby making them promising candidates for optoelectronic applications and solar energy conversion. More interestingly, significant charge transfers at the interfaces of SiS-ZnO heterostructures, have improved the adsorption of H, and the Gibbs free energy ΔH* becomes close to zero, which is optimal for the hydrogen evolution reaction to produce hydrogen. The findings pave the path for the practical realization of these heterostructures for potential applications in photovoltaics and photocatalysis of water splitting.

15.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987136

RESUMO

Nowadays, synthetic polymers are used in medical applications due to their special biodegradable, biocompatible, hydrophilic, and non-toxic properties. The materials, which can be used for wound dressing fabrication with controlled drug release profile, are the need of the time. The main aim of this study was to develop and characterize polyvinyl alcohol/polycaprolactone (PVA/PCL) fibres containing a model drug. A dope solution comprising PVA/PCL with the drug was extruded into a coagulation bath and became solidified. The developed PVA/PCL fibres were then rinsed and dried. These fibres were tested for Fourier transform infrared spectroscopy, linear density, topographic analysis, tensile properties, liquid absorption, swelling behaviour, degradation, antimicrobial activity, and drug release profile for improved and better healing of the wound. From the results, it was concluded that PVA/PCL fibres containing a model drug can be produced by using the wet spinning technique and have respectable tensile properties; adequate liquid absorption, swelling %, and degradation %; and good antimicrobial activity with the controlled drug release profile of the model drug for wound dressing applications.

16.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499611

RESUMO

The mirid bug Cyrtorhinus lividipennis (Reuter) is an important predator that consumes eggs and young nymphs of the brown planthopper Nilaparvata lugens as a primary food source and thus becomes an important member of the rice ecosystem. We identified and characterized the ClPSP gene in C. lividipennis encoding the phosphoserine phosphatase enzyme. The ClPSP has an open reading frame (ORF) of 957 bp encoding a protein with a length of 294bp and it possesses a haloacid dehalogenase-like (HAD) hydrolase, phosphoserine phosphatase, eukaryotic-like (HAD_PSP_eu) conserved domain. Furthermore, the in silico analysis of the ClPSP gene unveiled its distinct characteristics and it serves as a key player in the modulation of amino acids. The ClPSP showed expression in all developmental stages, with higher expression observed in the ovary and fat body. Silencing the ClPSP by RNA interference (RNAi) significantly decreased PSP enzyme activity and expression compared to dsGFP at two days after emergence (2DAE). The dsPSP treatment altered free hemolymph amino acid compositions, resulting in a significant reduction of serine (Ser) and Arginine (Arg) proportions and a significant increase of Threonine (Thr), Cystine (Cys), and Tyrosine (Tyr) in the C. lividipennis female at 2 DAE. Additionally, a hindered total protein concentration in the ovary and fat body, and reduced vitellogenin (Vg) expression, body weight, and number of laid eggs, were also observed. The same treatment also prolonged the preoviposition period and hindered ovarian development. Our data, for the first time, demonstrated the influential role of the PSP gene in modulating the fecundity of C. lividipennis and provide a platform for future insect pest control programs using the PSP gene in modulating fecundity.


Assuntos
Hemípteros , Heterópteros , Feminino , Animais , Ecossistema , Aminoácidos/metabolismo , Heterópteros/genética , Hemípteros/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Interferência de RNA
17.
Polymers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365551

RESUMO

Composites are macroscopic combinations of chemically dissimilar materials preferred for new high-tech applications where mechanical performance is an area of interest. Mechanical apprehensions chiefly include tensile, creep, and fatigue loadings; each loading comprises different modes. Fatigue is cyclic loading correlated with stress amplitude and the number of cycles while defining the performance of a material. Composite materials are subject to various modes of fatigue loading during service life. Such loadings cause micro invisible to severe visible damage affecting the material's performance. Mode I fatigue crack propagates via opening lamina governing a visible tear. Recently, there has been an increasing concern about finding new ways to reduce delamination failure, a life-reducing aspect of composites. This review focuses on mode I fatigue behaviours of various preforms and factors determining failures considering different reinforcements with respect to fibres and matrix failures. Numerical modelling methods for life prediction of composites while subjected to fatigue loading are reviewed. Testing techniques used to verify the fatigue performance of composite under mode I load are also given. Approaches for composites' life enhancement against mode I fatigue loading have also been summarized, which could aid in developing a well-rounded understanding of mode I fatigue behaviours of composites and thus help engineers to design composites with higher interlaminar strength.

18.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365700

RESUMO

In this study, cotton-reinforced alginate hydrogel fibers were successfully synthesized using the wet spinning technique to improve hydrogel fibers' mechanical strength and durability. Structural, chemical, and mechanical properties of the prepared fibers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray Diffraction, differential scanning calorimeter, and single fiber strength tester. Based on the results obtained from fourier transform infrared spectroscopy and x-ray Diffraction, cotton fibers have been successfully incorporated into the structure of the hydrogel fibers. It was seen from the differential scanning calorimeter results that the incorporation of fibers in the structure even enhanced the thermal stability of the fiber and is viable to be implanted in the human body. Cotton reinforcement in alginate hydrogel fibers increases the modulus up to 56.45 MPa providing significant stiffness and toughness for the hydrogel composite fiber. The tenacity of the fibers increased by increasing the concentration of alginate from 2.1 cN/Tex (1% w/v) to 8.16 cN/Tex (1.5% w/v). Fiber strength increased by 26.75% and water absorbance increased by 120% by incorporating (10% w/w) cotton fibers into the fibrous structure. It was concluded that these cotton-reinforced alginate hydrogel fibers have improved mechanical properties and liquid absorption properties suitable for use in various biomedical applications.

19.
Mol Biol Rep ; 49(12): 12039-12053, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309612

RESUMO

BACKGROUNDS: The BRASSINAZOLE-RESISTANT (BZR) family of transcription factors affects a variety of developmental and physiological processes and plays a key role in multiple stress-resistance functions in plants. However, the evolutionary relationship and individual expression patterns of the BZR genes are unknown in various crop plants. METHODS AND RESULTS: In this study, we performed a genome-wide analysis of the BZR genes family in wheat and rice. Here, we found a total of 16 and 6 proteins containing the BZR domain in wheat and rice respectively. The phylogenetic analysis divided the identified BZR proteins from several plants into five subfamilies. The intron/exon structural patterns and conserved motifs distribution revealed that BZR proteins exhibite high specificities in each subfamily. Moreover, the co-expression and protein-protein interaction analysis suggested that BZR proteins may interact/co-expressed with several other proteins to perform various functions in plants. The presence of different stresses, hormones and light-responsive cis-elements in promoter regions of BZR genes imply its diverse functions in plants. The expression patterns indicated that many BZR genes regulate organ development and differentiation. BZR genes significantly respond to exogenous application of brassinosteroids, melatonin and abiotic stresses, demonstrating its key role in various developmental and physiological processes. CONCLUSION: The present study establishes the foundation for future functional genomics studies of BZR genes through reverse genetics and to further explore the potential of BZR genes in mitigating the stress tolerance in crop plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Filogenia , Triticum/metabolismo , Estresse Fisiológico/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Família Multigênica
20.
Bioengineering (Basel) ; 9(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36004924

RESUMO

The homeodomain-leucine zipper (HDZIP) is an important transcription factor family, instrumental not only in growth but in finetuning plant responses to environmental adversaries. Despite the plethora of literature available, the role of HDZIP genes under chewing and sucking insects remains elusive. Herein, we identified 40 OsHDZIP genes from the rice genome database. The evolutionary relationship, gene structure, conserved motifs, and chemical properties highlight the key aspects of OsHDZIP genes in rice. The OsHDZIP family is divided into a further four subfamilies (i.e., HDZIP I, HDZIP II, HDZIP III, and HDZIP IV). Moreover, the protein-protein interaction and Gene Ontology (GO) analysis showed that OsHDZIP genes regulate plant growth and response to various environmental stimuli. Various microRNA (miRNA) families targeted HDZIP III subfamily genes. The microarray data analysis showed that OsHDZIP was expressed in almost all tested tissues. Additionally, the differential expression patterns of the OsHDZIP genes were found under salinity stress and hormonal treatments, whereas under brown planthopper (BPH), striped stem borer (SSB), and rice leaf folder (RLF), only OsHDZIP3, OsHDZIP4, OsHDZIP40, OsHDZIP10, and OsHDZIP20 displayed expression. The qRT-PCR analysis further validated the expression of OsHDZIP20, OsHDZIP40, and OsHDZIP10 under BPH, small brown planthopper (SBPH) infestations, and jinggangmycin (JGM) spraying applications. Our results provide detailed knowledge of the OsHDZIP gene family resistance in rice plants and will facilitate the development of stress-resilient cultivars, particularly against chewing and sucking insect pests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...