Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 268: 119896, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693598

RESUMO

Our perceptions and decisions are not always objectively correct as they are featured by a bias related to our self. What are the behavioral, neural, and computational mechanisms of such cognitive bias? Addressing this yet unresolved question, we here investigate whether the cognitive bias is related to temporal integration and segregation as mediated by the brain's Intrinsic neural timescales (INT). Using Signal Detection Theory (SDT), we operationalize the cognitive bias by the Criterion C as distinguished from the sensitivity index d'. This was probed in a self-task based on morphed self- and other faces. Behavioral data demonstrate clear cognitive bias, i.e., Criterion C. That was related to the EEG-based INT as measured by the autocorrelation window (ACW) in especially the transmodal regions dorsolateral prefrontal cortex (dlPFC) and default-mode network (DMN) as distinct from unimodal visual cortex. Finally, simulation of the same paradigm in a large-scale network model shows high degrees of temporal integration of temporally distinct inputs in CMS/DMN and dlPFC while temporal segregation predominates in visual cortex. Together, we demonstrate a key role of INT-based temporal integration in CMS/DMN and dlPFC including its relation to the brain's uni-transmodal topographical organization in mediating the cognitive bias of our self.


Assuntos
Cognição , Imageamento por Ressonância Magnética , Humanos , Simulação por Computador , Encéfalo , Mapeamento Encefálico
2.
Neuropsychologia ; 45(9): 2025-37, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17382977

RESUMO

This study investigates how unilateral and bilateral vestibular deafferentation modifies visual vertical perception in the presence of dynamic and static visual cues. We tested 40 Menière's patients before and after (from 1 week to 1 year) a curative unilateral vestibular neurotomy (UVN), and 4 patients with bilateral vestibular loss. Patients' performances were compared with those of 24 healthy subjects. The perception of the dynamic visual vertical (DVV) was investigated during optokinetic stimulations around the line of sight at various angular velocities. The static visual vertical (SVV) was recorded with a stationary visual pattern. In the acute stage after UVN, Menière's patients exhibited drastic impairment of DVV, which was tilted towards the lesioned side, whatever the direction of the optokinetic stimulation. In addition, the SVV was systematically tilted towards the lesioned side. The optokinetic-induced tilt of the vertical was asymmetrically organized around the new SVV with a significant decrease for contralesional stimulations and no change for ipsilesional stimulations, whatever the postoperative time. The SVV regained normal values 1 year postoperatively. For the patients with bilateral vestibular loss, the optokinetic-induced tilt of the visual vertical was drastically increased and symmetrically organized around an unmodified SVV aligned with the gravitational vertical. This study constitutes the first description of the recovery time-course of DVV perception after unilateral vestibular loss. Data reveal a long-term impairment of the DVV perception after unilateral vestibular loss, suggesting an asymmetrical processing of visual information and a permanent increased weight of dynamic visual cues after bilateral vestibular loss.


Assuntos
Lateralidade Funcional/fisiologia , Doença de Meniere/fisiopatologia , Percepção Espacial/fisiologia , Campos Visuais/fisiologia , Adulto , Análise de Variância , Sinais (Psicologia) , Feminino , Seguimentos , Humanos , Masculino , Doença de Meniere/cirurgia , Pessoa de Meia-Idade , Dinâmica não Linear , Estimulação Luminosa/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...