Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(18): 8858-8867, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38488103

RESUMO

For decades, the inherently reflective nature of metallic electromagnetic (EM) shields and their induced secondary EM pollution have posed significant challenges for sensitive electronics. While numerous efforts have been made to develop superior EM shielding systems, the issue of reflection dominancy in metallic substrates remains unresolved. Herein, we addressed this long-lasting obstacle by pairing metallic shields with ultra-lightweight (density of 3.12-3.40 mg cm-3) elastic anti-reflection aerogels, altering their shielding mechanism from dominant reflection (reflectance >0.8) to absorption (absorbance >0.7) by trapping EM waves inside the aerogel. The aerogel EM traps were generated using interfacial complexation, yielding engineerable filamentous liquid structures. These served as templates for aerogel creation through a follow-up process of freezing and lyophilization. The engineerable lossy medium of aerogels benefits from a multi-scale porous construct with the combined action of dielectric and conduction losses, highly dissipating the EM waves and minimizing the reflections. Notably, declining the diameter of aerogel filaments promoted its absorption dominancy, rendering it a potent dissipating medium for EM waves. Pairing a metallic substrate with filamentous aerogel EM traps has resulted in an exceptionally effective absorption-dominant shielding system, achieving absorbance levels between 0.70-0.81. This system offers a shielding effectiveness of 53-89 dB within the X-band frequency range. This innovation addresses a persistent issue in shielding science related to the reflective characteristics of metallic substrates, effectively inhibiting their induced EM reflections.

2.
Adv Mater ; : e2400311, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483010

RESUMO

The growth of aerobic microbes at air-water interfaces typically leads to biofilm formation. Herein, a fermentative alternative that relies on oil-water interfaces to support bacterial activity and aerotaxis is introduced. The process uses under-liquid biofabrication by structuring bacterial nanocellulose (BNC) to achieve tailorable architectures. Cellulose productivity in static conditions is first evaluated using sets of oil homologues, classified in order of polarity. The oils are shown for their ability to sustain bacterial growth and BNC production according to air transfer and solubilization, both of which impact the physiochemical properties of the produced biofilms. The latter are investigated in terms of their morphological (fibril size and network density), structural (crystallinity) and physical-mechanical (surface area and strength) features. The introduced under-liquid biofabrication is demonstrated for the generation of BNC-based macroscale architectures and compartmentalized soft matter. This can be accomplished following three different routes, namely, 3D under-liquid networking (multi-layer hydrogels/composites), emulsion templating (capsules, emulgels, porous materials), and anisotropic layering (Janus membranes). Overall, the proposed platform combines living matter and multi-phase systems as a robust option for material development with relevance in biomedicine, soft robotics, and bioremediation, among others.

3.
Nat Commun ; 14(1): 7811, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016959

RESUMO

Janus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, Ti3C2Tx/GO, or GO suspensions. The resultant Janus liquids can be used as templates for versatile, responsive, and mechanically robust aerogels suitable for piezoresistive sensing, human motion monitoring, and electromagnetic interference (EMI) shielding with a tuned absorption mechanism. The EMI shields outperform their current counterparts in terms of wave absorption, i.e., SET ≈ 51 dB, SER ≈ 0.4 dB, and A = 0.91, due to their high porosity ranging from micro- to macro-scales along with non-interfering magnetic and conductive networks imparted by the Janus architecture.

4.
ACS Appl Mater Interfaces ; 15(25): 30106-30116, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319265

RESUMO

The postsynthetic modification of metal-organic frameworks (MOFs) has opened up a promising area to widen their water treatment application. However, their polycrystalline powdery state still restricts their widespread industrial-scale applications. Herein, the magnetization of UiO-66-NH2 is reported as a promising approach to facilitate the separation of the used MOFs after water treatment. A two-step postmodification procedure employing 2,4,6-trichloro-1,3,5-triazine (TCT) and 5-phenyl-1H-tetrazole (PTZ) agents was introduced to level up the adsorption performance of the magnetic nanocomposite. Despite a decrement in porosity and specific surface area of the designed MOFs (m-UiO-66-TCT) compared to neat UiO-66-NH2, it outweighs in adsorption capacity. It was observed that m-UiO-66-TCT has an adsorption capacity of ≈298 mg/g for methyl orange (MO) with facile MOF separation using an external magnet. Pseudo-second-order kinetic model and Freundlich isotherm models suitably interpret the experimental data. Thermodynamic studies showed that MO removal using m-UiO-66-TCT is spontaneous and thermodynamically favorable at higher temperatures. The m-UiO-66-TCT composite exhibited easy separation, high adsorption capacity, and good recyclability, rendering it an attractive candidate for the adsorptive removal of MO dye from aqueous environments.

5.
Biomacromolecules ; 24(2): 775-788, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36546647

RESUMO

Engineering the rheological properties of colloidal inks is one of the main challenges in achieving high-fidelity 3D printing. Herein, we provide a comprehensive study on the rheological behavior of inks based on cellulose nanocrystals (CNCs) in the presence of given salts to enable high-quality 3D printing. The rheological properties of the CNC suspensions are tailored by considering the nature of the electrolyte (i.e., 10 types of salts featuring different ion sizes, charge numbers, and inter- and intra-molecular interactions) at various concentrations (25-100 mM). A high printing fidelity is achieved in a narrow CNC and salt concentration range, significantly depending on the salt type. The structure-property relationship is explored in a "3D-printing" space (2D map), introducing a guideline for researchers active in this field. To further unravel the effect of salt type on morphological properties, CNC aerogels are developed by freeze-drying the printed structures. The results illustrate that enhancing viscoelastic properties render a denser structure featuring smaller pores.


Assuntos
Celulose , Nanopartículas , Celulose/química , Tinta , Sais , Impressão Tridimensional , Cloreto de Sódio/química , Nanopartículas/química
6.
J Control Release ; 353: 1-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343762

RESUMO

Beta-amyloid (Aß) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aß. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aß plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.


Assuntos
Doença de Alzheimer , Estruturas Metalorgânicas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Biomarcadores
7.
J Environ Manage ; 316: 115214, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594821

RESUMO

This article deals with the adsorption performances of the unmodified nanodiamond (ND) and thermally oxidized nanodiamond (Ox-ND) for the removal of different heavy metal ions such as Fe (III), Cu (II), Cr (VI), and Cd (II) from wastewater. The adsorption capacities of the ions onto adsorbents are higher and follow the order: Ox-ND-3 > Ox-ND-1.5 > ND, which is consistent with their surface areas, zeta potentials, and the presence of carboxyl groups, suggesting that electrostatic attractions between the positive metal ions and the negatively charged adsorbents are the predominant adsorption mechanisms. Adsorption capacities of these adsorbents were found to be 26.8, 31.3, and 45.7 mg/g for Fe (III), 25.2, 30.5, and 44.5 mg/g for Cu (II), 33.6, 44.1, and 55.9 mg/g for Cr (VI), and 40.9, 52.9, and 67.9 mg/g for Cd (II) over ND, Ox-ND-1.5, and Ox-ND-3, respectively. The impact of various operating parameters such as agitation time, initial metal ion concentration, temperature, pH solution, adsorbent dosage, and coexistence of the metal ions on the adsorption performance of Ox-ND-3 towards Cd (II) ions along with the batch adsorption experiments were performed. The equilibrium was reached in 120 min and adsorption data were fitted well with the pseudo-second-order kinetic as well as the Freundlich isotherm models. Adsorption process was spontaneous and exothermic, while the maximum removal efficiency of Cd (II) ions occurred at pH of 6.9 and at 4 g/L dosage. These findings demonstrated that thermally oxidized nanodiamond (Ox-ND) can be a versatile adsorbent to remove the Cd (II) ions from wastewater.


Assuntos
Metais Pesados , Nanodiamantes , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Águas Residuárias , Água , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 433: 128792, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364540

RESUMO

Microwave regeneration of adsorbents offers several advantages over conventional regeneration methods; however, its application for microwave transparent adsorbents such as polymers is challenging. In this study, hypercrosslinked polymer/graphene oxide (GO) nanocomposites with large surface area and enhanced microwave absorption ability were synthesized. Polymers of 4, 4´-bis ((chloromethyl)-1, 1´-biphenyl- benzyl chloride) were hypercrosslinked through the Friedel-Crafts reactions. GO sheets were synthesized through the Hummer's method. Nanocomposites with different GO contents (1-8 wt%) were synthesized by solution mixing method. Thermogravimetry analysis revealed a large enhancement in the thermal stability of GO-filled nanocomposites compared to pristine polymer. N2 adsorption isotherm analysis showed 7% and 10% reduction in BET surface area and total pore volume of the nanocomposite with 8 wt% GO. Compared to the pristine polymer, the dielectric constant and dielectric loss factor increased from 5 to 17 and 0.05-1.6, respectively, for the nanocomposites with 8 wt% GO. Microwave-assisted desorption of toluene from samples revealed more than 160 ºC and 4 times improvement in the desorption temperature and desorption efficiency, respectively, by addition of 4 wt% GO to the polymer. This study showed the important role of GO addition for efficient microwave-assisted regeneration of polymer adsorbents.

9.
Small ; 18(20): e2200220, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279945

RESUMO

The rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter. The as-obtained LS systems can be readily converted into ultra-flyweight aerogels displaying worm-like morphologies with multiscale porosities (micro- and macro-scaled). The presence of reduced GO nanosheets in such large surface area systems renders materials with outstanding mechanical compressibility and tailorable electrical activity. This platform for engineering soft materials and solid constructs opens up new horizons toward advanced functionality and tunability, as demonstrated here for ultralight printed conductive circuits and electromagnetic interference shields.


Assuntos
Condutividade Elétrica , Porosidade
10.
Chemosphere ; 275: 130055, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984903

RESUMO

The worldwide development of agriculture and industry has resulted in contamination of water bodies by pharmaceuticals, pesticides and other xenobiotics. Even at trace levels of few micrograms per liter in waters, these contaminants induce public health and environmental issues, thus calling for efficient removal methods such as adsorption. Recent adsorption techniques for wastewater treatment involve metal oxide compounds, e.g. Fe2O3, ZnO, Al2O3 and ZnO-MgO, and carbon-based materials such as graphene oxide, activated carbon, carbon nanotubes, and carbon/graphene quantum dots. Here, the small size of metal oxides and the presence various functional groups has allowed higher adsorption efficiencies. Moreover, carbon-based adsorbents exhibit unique properties such as high surface area, high porosity, easy functionalization, low price, and high surface reactivity. Here we review the cytotoxic effects of pharmaceutical drugs and pesticides in terms of human risk and ecotoxicology. We also present remediation techniques involving adsorption on metal oxides and carbon-based materials.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Praguicidas , Preparações Farmacêuticas , Poluentes Químicos da Água , Adsorção , Humanos , Nanotubos de Carbono/toxicidade , Óxidos/toxicidade , Praguicidas/análise , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
Chemosphere ; 275: 130087, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33676279

RESUMO

In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective adsorption ability of the synthesized nanocomposite against various drugs in the single, binary, and ternary solutions containing QCT, Curcumin (CUR), and Methotrexate (MTX) drugs was also studied. The synthesized adsorbent showed good adsorption selectivity for QCT against CUR and MTX. The adsorption mechanism of QCT on the nanocomposite might be related to the hydrogen bonding and hydrophobic-hydrophobic interactions via π-π stacking interactions between the benzene ring skeleton of QCT and the aromatic structure of the adsorbent nanoparticles. The regeneration and reusability studies demonstrated that the developed adsorbent sustained good structural stability and adequate adsorption capacity for QCT after ten consecutive adsorption-desorption cycles.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Cinética , Fenômenos Magnéticos , Magnetismo , Quercetina
12.
Chemosphere ; 264(Pt 2): 128466, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33065327

RESUMO

Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39, and 208.33 mg/g for Pb, Cd, and Cu ions, respectively. The adsorption of Pb, Cd, and Cu ions onto UiO-66-EDA was dependent on electron exchange, electron sharing, electrostatic and covalent interactions between the metal ions as well as the abundant functional groups on UiO-66-EDA surface. Thermodynamic parameters such as free energy changes (ΔG), standard enthalpy changes (ΔH), and standard entropy changes (ΔS) were calculated, which revealed spontaneous and endothermic nature of the adsorption process. The UiO-66-EDA was stable and recyclable during adsorption studies of Pb, Cd, and Cu ions, suggesting its potentiality as an adsorbent for heavy metals recovery.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Etilenodiaminas , Concentração de Íons de Hidrogênio , Íons , Cinética , Termodinâmica , Água , Poluentes Químicos da Água/análise
13.
J Environ Manage ; 277: 111448, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254841

RESUMO

A series of metal-organic frameworks (MOFs) based on aluminum-benzene dicarboxylates (MIL-53, NH2-MIL-53, and NH2-MIL-101) at different ratios have been synthesized, and their adsorption performances for methotrexate (MTX), an anti-cancer drug, have been investigated in terms of adsorption kinetics, isotherms, solution pH, thermodynamics, mechanism, and recyclability. Maximum adsorption values of 374.97, 387.82, and 457.69 mg/g were observed for MIL-53, NH2-MIL-53, and NH2-MIL-101 , respectively. Our study shows that adsorption capacity of MTX depends not only on surface area and pore volume but also on the zeta potential and the presence of suitable functional groups. Higher adsorption of NH2-MIL-101 observed for MTX than the other synthesized MOFs may be attributed to its large surface area, large total pore volume, high positive zeta potential, and polar amino functional groups located on its surface, which are responsible for its increased interactions with MTX molecules. Adsorption isotherms and kinetics of MTX onto NH2-MIL-101 followed the Langmuir and pseudo-second-order kinetic equations. Thermodynamic data suggest that adsorption of MTX onto NH2-MIL-101 is spontaneous and exothermic, while the adsorption mechanism is governed by electrostatic interactions, π-π stacking interactions, and H-bonding. Regeneration and recyclability of NH2-MIL-101 were also investigated by washing with ethanol to observe its decreased adsorption performance towards MTX. It was slightly decreased after seven adsorption-desorption cycles, indicating excellent regeneration and good structural stability under the chosen experimental conditions.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Adsorção , Alumínio , Humanos , Metotrexato
14.
J Environ Manage ; 274: 111155, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805472

RESUMO

This work reports on the potential application of UiO-66 in gas sweetening and its structural stability against water, air, dimethylformamide (DMF), and chloroform. The UiO-66 nanoparticles were solvothermally synthesized at different scales and activated via solvent exchange technique using chloroform, methanol, and ethanol. Thus prepared and aged MOFs were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and nitrogen adsorption-desorption analysis. The chloroform-activated MOF showed the largest surface area among all activation solvents, and presented high uptakes of 8.8 and 4.3 mmol/g for CO2 and CH4, respectively, at 298 K and 30 bar. This might be due to removing all unreacted organic ligands and DMF molecules from the pores of the framework. The UiO-66 nanoparticles are stable at the experimental conditions with no significant loss in crystalline structure and gas adsorption ability even after aging under different conditions for one year. The UiO-66 could be easily regenerated at 373 K with no observed significant reduction in gas uptakes even after five consecutive adsorption-desorption cycles. The present findings suggest the excellent potential of the UiO-66-derived MOFs as the promising materials for CO2/CH4 separation at low pressures and results can be applied in practical natural gas sweetening.


Assuntos
Poluentes Químicos da Água/análise , Água , Adsorção , Solventes , Difração de Raios X
15.
Dalton Trans ; 48(36): 13555-13566, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31353374

RESUMO

Mixed-matrix membranes (MMMs) are promising candidates for carbon dioxide separation. However, their application is limited due to improper dispersion of fillers within the polymer matrix, poor interaction of fillers with polymer chains, and formation of defects and micro-voids at the interface of both phases, which all result in the decline of the gas separation performance of MMMs. In this work, we present a new method to overcome these challenges. To this end, a series of MMMs based on polyethersulfone (PES) as the continuous polymer matrix and MIL-53-derived MOFs as the dispersed filler were prepared. FTIR-ATR, XRD, TGA, FESEM, and N2 adsorption/desorption analyses were employed to characterize the structural properties of the synthesized nanoparticles. The obtained results indicated that 3-aminopropyltriethoxysilane (APTES) molecules were successfully attached onto the surface of NH2-MIL-53(Al). Morphological characterization by FESEM and energy dispersive X-ray mapping (EDX) showed that desirable distribution within the whole membrane thickness, suitable nanoscale dispersion, and excellent interface were achieved by using amino-silane-grafted NH2-MIL-53(Al) (A-MIL-53(Al)) nanoparticles. The permeation results indicated that the permeability of two gases and the ideal CO2/CH4 selectivity enhanced by increasing the concentration of MOFs. In particular, comparing the experimental gas separation results of A-MMM-10 with those of pure PES membrane showed an 84% increase in the CO2 permeability and a 70% increase in CO2/CH4 selectivity. These results suggest that post-synthetic modification of MOF nanoparticles and strong interfacial adhesion between functionalized nanoparticles and polymer matrix could be a useful method to eliminate interfacial voids and improve gas separation efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...