Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 213: 106506, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752960

RESUMO

BACKGROUND AND OBJECTIVES: The left atrial appendage (LAA) is the most common region for thrombus formation in atrial fibrillation (AF). Morphological parameters such as shape, size, and LAA volume can cause insufficient effectiveness of available therapeutic options. This study aimed to examine blood flow inside LAA and its removal effects. Computational fluid dynamic (CFD) simulations were carried out on two patients with different morphologies. METHODS: Two patients' CT was used to reconstruct the 3D geometries of the left atrium (LA) and left atrial appendage (LAA). Then, the geometries were refined in the mentioned software, and the LAA in some models was removed. Next, in generated 3D volume mesh, sinus rhythm (SR) and atrial fibrillation (AF) outflow velocity were imposed at the mitral valve as boundary conditions. Finally, CFD simulation was conducted to analyzing blood flow within LA with/without LA. RESULTS: The results confirmed that velocity and vorticity decreased under AF conditions inside the LA domain for both patients. However, removing LAA may cause unpredictable consequences, due to different shape and volume of LAA. LAA removal had insignificant effects on velocity and vorticity within LA in SR-mitral outflow. However, removing LAA increased the blood flow rate by 9.15% and vorticity by 7.27% for patient one under AF rhythm (SR)-outflow. In contrast, for patient two, LAA removal in both AF and SR decreased velocity and vorticity within the LA domain. In SR-mitral outflow, velocity dropped by 18.8 %, and vorticity by 13.2%. Also, under AF velocity and vorticity decreased by 23.33% and 18.6% respectively. Meanwhile, the results indicated that the vorticity magnitude increased inside the LAA under AF associated with the risk of thrombus formation, particularly for patient one under AF. The distal part of LAA in both patients was the most common region for blood stasis because of the lowest velocity magnitude. CONCLUSION: Overall, the morphology of LAA could be the critical parameter to determine the possibility of thrombosis formation, particularly under AF conditions. High volume, low blood flow velocity and two-lobe-appendage are more likely to have blood stasis. Furthermore, the morphology difference can affect the LAA removal result and make it more complicated. So, it could be challenging to generalize LAA removal as a therapeutic option for different patients. The implication of this CFD observation needs more investigation.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Apêndice Atrial/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Átrios do Coração/diagnóstico por imagem , Hemodinâmica , Humanos
2.
Langmuir ; 34(1): 198-204, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29185772

RESUMO

The detachment of droplets from cylindrical fibers is of fundamental importance for both scientific research and engineering applications. Due to the challenges to determine dynamic contact angles on the fiber surface, the process of the droplet detachment from a fiber is not well understood. In this paper, a multibody dissipative particle dynamics (MDPD) method, a particle-based mesh-free method that can automatically capture the dynamic contact angles through direct modeling of liquid-solid particle interactions, was applied to study the detachment process of a liquid microdroplet from a cylindrical solid fiber pulled by an atomic force microscopy (AFM) tip under a constant velocity. After the validation of the numerical results through comparison with experiments in a benchmark case, the same numerical tool was applied to analyze the droplet detachment mechanisms. Based on the slope of the time history curve for the displacement of the droplet mass center, the detachment process can be divided into six stages. The change of slope in each stage can be explained from the change of surface energy. The results can greatly advance the fundamental understanding of the detachment process of microdroplets from cylindrical fibers.

3.
Phys Rev E ; 94(3-1): 033112, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739804

RESUMO

While there are intensive studies on the coalescence of sessile macroscale droplets, there is little study on the coalescence of sessile microdroplets. In this paper, the coalescence process of two sessile microdroplets is studied by using a many-body dissipative particle dynamics numerical method. A comprehensive parametric study is conducted to investigate the effects on the coalescence process from the wettability gradient, hydrophilicity of the solid surface, and symmetric or asymmetric configurations. A water bridge is formed after two microdroplets contact. The temporal evolution of the coalescence process is characterized by the water bridge's radii parallel to the solid surface (W_{m}) and perpendicular to the solid surface (H_{m}). It is found that the changes of both H_{m} and W_{m} with time follow a power law; i.e., H_{m}=ß_{1}τ^{ß} and W_{m}=α_{1}τ^{α}. The growth of H_{m} and W_{m} depends on the hydrophilicity of the substrate. W_{m} grows faster than H_{m} on a hydrophilic surface, and H_{m} grows faster than W_{m} on a hydrophobic surface. This is due to the strong competition between capillary forces induced by the water-bridge curvature and the solid substrate hydrophobicity. Also, flow structure analysis shows that regardless of the coalescence type once the liquid bridge is formed the liquid flow direction inside the capillary bridge is to expand the bridge radius. Finally, we do not observe oscillation of the merged droplet during the coalescence process, possibly due to the significant effects of the viscous forces.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25768592

RESUMO

We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA