Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5384, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443380

RESUMO

Activated carbon (AC) and ZnO@AC composite derived from wood sawdust were prepared to be utilized as adsorbents for methyl red (MR) and methyl orange (MO) anionic dyes from the aqueous solutions. The maximum adsorption capacity of the AC and ZnO@AC composite toward both dyes was achieved in the strong acidic medium (pH = 3), and under stirring for 60 min. The kinetic studies revealed that the adsorption of MR and MO dyes onto the AC and ZnO@AC composite fitted well with the pseudo-second-order model. Furthermore, the intraparticle diffusion and Elovich kinetic models confirmed the adsorption is controlled by external surfaces, and the adsorption is chemisorption process. The isotherm results indicated that the MR and MO dye adsorption occurred via monolayer adsorption, and the estimated maximum adsorption capacities of both dyes onto the ZnO@AC composite were higher than those achieved by AC. Thermodynamic analysis suggested that the adsorption is endothermic and spontaneous. The mechanism for MR, and MO dyes adsorption onto the AC and ZnO@AC composite is proposed to be controlled by electrostatic bonding, π-π interactions, and ion exchange, while H-bonding and n-π interactions were minor contributors. This study reveals the potential use of carbon-based adsorbents derived from wood sawdust for the removal of anionic dyes from wastewater.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34578634

RESUMO

Nanoscience enables researchers to develop new and cost-effective nanomaterials for energy, healthcare, and medical applications. Silver nanoparticles (Ag NPs) are currently increasingly synthesized for their superior physicochemical and electronic properties. Good knowledge of these characteristics allows the development of applications in all sensitive and essential fields in the service of humans and the environment. This review aims to summarize the Ag NPs synthesis methods, properties, applications, and future challenges. Generally, Ag NPs can be synthesized using physical, chemical, and biological routes. Due to the great and increasing demand for metal and metal oxide nanoparticles, researchers have invented a new, environmentally friendly, inexpensive synthetic method that replaces other methods with many defects. Studies of Ag NPs have increased after clear and substantial support from governments to develop nanotechnology. Ag NPs are the most widely due to their various potent properties. Thus, this comprehensive review discusses the different synthesis procedures and electronic applications of Ag NPs.

3.
ACS Omega ; 5(23): 13630-13640, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566828

RESUMO

Here, 3,4-dimethylaniline (3,4-DMA) was selected as a representative organic substance of aniline compounds. A biochar-titanium dioxide (BC-TiO2) composite was prepared by the sol-gel method to investigate its adsorption ability toward the 3,4-DMA compound. Simultaneously, the prepared composite's adsorption ability and physical and physicochemical properties were also investigated. The isotherm studies confirmed that the adsorption of 3,4-DMA on both BC and BC-TiO2 composite agrees with the Langmuir and Toth adsorption models, which means the formation of a monolayer of 3,4-DMA on the surface. The maximum adsorption capacity of 3,4-DMA was 322.58 mg g-1 and 285.71mg g-1 for BC and BC-TiO2, respectively. Furthermore, the adsorption kinetics reveals that the adsorption process of 3,4-DMA on BC and the BC-TiO2 composite is controlled by the pseudo-second-order kinetic model with an R 2 of 0.99.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...