Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammopharmacology ; 31(5): 2467-2478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661242

RESUMO

Naloxone is a non-selective opiate receptor antagonist that is mainly used in the management of acute opioid overdose or intoxication. Previously, naloxone has been shown to have anti-inflammatory and antioxidant properties. Concanavalin A (Con A) model is a common and well established animal model of autoimmune hepatitis that closely resembles the pathological alterations that occur in human. The present study demonstrates that a low dose of naloxone (LD NX) has the ability to improve hepatic function and attenuate hepatic damage induced by Con A as indicated by a clear reduction in serum aminotransferase, bilirubin and enhancement of albumin production as well as liver pathological changes. Also, The proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interferon- γ (IFN-γ), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were highly suppressed in animals pretreated with LD NX via interference with TLR4/NF-κB as well as JNK signaling pathways. Furthermore, oxidative stress was highly attenuated in animals pretreated with LD NX as indicated by high reduction in hepatic MDA and an increase in Nrf2, HO-1 expression and subsequent production of the endogenous antioxidants, SOD, CAT and GSH. Collectively, this study demonstrates that LD NX has the ability to mitigate Con A-induced autoimmune hepatitis via modulation of inflammatory cytokines secretion and interference with reactive oxygen species generation.


Assuntos
Hepatite Autoimune , NF-kappa B , Animais , Humanos , Fator 2 Relacionado a NF-E2 , Receptor 4 Toll-Like , Hepatite Autoimune/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Antioxidantes/farmacologia , Concanavalina A/farmacologia , Citocinas
3.
Toxics ; 11(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668774

RESUMO

Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized. Four groups of rats were used: (1) control; (2) GNT only; (3) GNT plus DIOS; and (4) DIOS only. Nephrotoxicity was elucidated, and the microRNA-21 (miR-21) and microRNA-155 (miR-155) expression and Nrf2/HO-1 and p38-MAPK/NF-κB pathways were assessed. GNT provoked an upsurge in the relative kidney weight and serum level of urea, creatinine, and KIM-1. The MDA level was markedly boosted, with a decline in the level of TAC, SOD, HO-1, and Nrf2 expression in the renal tissue. Additionally, GNT exhibited a notable amplification in TNF-α, IL-1ß, NF-κB p65, and p38-MAPK kidney levels. Moreover, caspase-3 and BAX expression were elevated, whereas the Bcl-2 level was reduced. Furthermore, GNT resulted in the down-regulation of miR-21 expression along with an up-regulation of the miR-155 expression. Histological examination revealed inflammation, degradation, and necrosis. GNT-provoked pathological abnormalities were reversed by DIOS treatment, which restored normal kidney architecture. Hence, regulating miR-21 and -155 expression and modulating Nrf2/HO-1 and p38-MAPK/NF-κB pathways could take a vital part in mediating the reno-protective effect of DIOS.

4.
Drug Chem Toxicol ; 46(5): 851-863, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35899710

RESUMO

Gentamicin (GM) is an effective antibiotic administered to treat acute Gram-negative infections. Nevertheless, its clinical application is limited due to nephrotoxicity. Therefore, our research aimed to investigate the potential renoprotective impact of rebamipide (RBM), a gastroprotective drug, on GM-induced kidney damage in rats, as well as putative nephroprotective pathways. RBM was orally administered (100 mg/kg/d for 14 d) commencing 7 d before the administration of GM (100 mg/kg/d, intraperitoneally). Nephrotoxicity was elucidated, and the silent information regulator 1 (SIRT1) and ß-catenin/cyclin D1 pathways were assessed. GM induced a significant elevation in the serum levels of creatinine, blood urea nitrogen (BUN), and kidney injury molecule-1 (KIM-1), as well as the relative kidney index. In addition, GM increased lipid peroxidation and lowered total antioxidant capacity (TAC) level and superoxide dismutase (SOD) activity. GM administration also demonstrated a significant amplification in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), nuclear factor-κappa B p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), and caspase-3 kidney levels, as well as B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio. Notably, RBM treatment amended all these changes induced by GM. Furthermore, the potential role of SIRT1 and ß-catenin-dependent signaling pathways in GM-induced renal injury was assessed. Our findings showed that GM-treated rats demonstrated a substantial decrease in SIRT1, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) along with an increase in ß-catenin, forkhead box O-3a (FOXO-3a), and cyclin D1 protein expressions. RMB treatment markedly attenuated the deterioration caused by GM on these pathways. Additionally, RBM alleviated the GM-induced deleterious kidney tissue histopathology. In conclusion, our findings have verified that RBM can halt GM-induced renal injury by partly modulating SIRT1 and ß-catenin pathways.


Assuntos
Gentamicinas , Sirtuína 1 , Ratos , Animais , Gentamicinas/toxicidade , Gentamicinas/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Ciclina D1/metabolismo , beta Catenina/metabolismo , beta Catenina/farmacologia , Rim , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Oxidativo , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo
5.
J Diet Suppl ; 20(3): 391-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34633271

RESUMO

Depression is a severely debilitating psychiatric disorder that influences more than 15% of the population worldwide. It has been demonstrated that it is associated with a high risk of developing other diseases such as cardiovascular diseases, diabetes, stroke, epilepsy, and cancer. The current study examines the possibility of chrysin and lycopene having an antidepressant effect in a rat model of depression induced by clonidine, as well as the mechanisms underlying this effect, including the role of neuroinflammation and oxidative stress. Rats were allotted into seven groups. The rats in group 1 served as a control. Group 2 received lycopene only. Group 3 was provided chrysin only. Group 4 was administered clonidine and served as the model. Group 5 was offered lycopene and clonidine. Group 6 was administered chrysin and clonidine. Group 7 was given FLX and clonidine and represented the standard. The experiment lasted two weeks, during which behavioral, biochemical, histopathological, and immunohistochemical measurements were performed. Lycopene and chrysin were used to correct the concentrations of noradrenaline and serotonin hippocampal tissue concentrations. These findings were also improved by immunohistochemical analysis of GFAP, VEGF, caspase3, and histopathological examinations, in which pretreatment of rats with lycopene and chrysin reversed all clonidine-induced alterations. The current research demonstrates that lycopene and chrysin have an auspicious antidepressant effect against clonidine that provoked behavioral hopelessness in rats. Manipulating oxidative stress, inflammation, and apoptosis may partially represent the corrective mechanism for the neuroprotective actions against the depressive effect of clonidine.


Assuntos
Clonidina , Depressão , Ratos , Animais , Licopeno/farmacologia , Clonidina/farmacologia , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Doenças Neuroinflamatórias , Estresse Oxidativo , Flavonoides/farmacologia , Antidepressivos/farmacologia , Antioxidantes/farmacologia
6.
Eur J Pharmacol ; 932: 175204, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964655

RESUMO

Current treatments for Parkinson's Disease (PD) only provide symptomatic relief; however, they don't delay the disease progression, hence new treatment options should be considered. Carvedilol is a nonselective ß & α1 blocker with additional effects as an antioxidant, anti-inflammatory and neuro protective properties. In this research, an insilico study was conducted to primarily evaluate carvedilol as an anti-parkinsonian and anti-tau protein target. PASS prediction was performed followed by a docking study of carvedilol. Carvedilol yielded promising results and forward guided this study onto its in vivo evaluation. The in vivo study aimed to assess the neuro-protective effects of carvedilol in rotenone-induced rat model of PD and investigate the potential underlying mechanisms. The effects of carvedilol (2.5, 5, and 10 mg/kg) on the measured parameters of open field, catalepsy, Y-maze tests as well as brain histology, and tyrosine hydroxylase (TH) were evaluated. The effective doses (5 and 10 mg/kg) were further tested for their potential anti-tau protein effects. Carvedilol (5 and 10 mg/kg) prevented rotenone-induced motor deficits, spatial memory dysfunction, and histological damage. Additionally, carvedilol significantly inhibited rotenone-induced decrease in TH expression in the striata of the rats. These effects were associated with reduction of rotenone-induced neuro-inflammation, microglial activation and release of glial fibrillary acidic protein (GFAP), along with reduction in N-methyl-D-aspartate receptors activation, alpha-synculein and phospho-Tau (P-Tau) protein expression. Carvedilol also reduced tau protein hyper-phosphosrylation by Glycogen synthase 3ß (GSK 3ß) inhibition and Phosphoinositide 3-kinase (PI3K) stimulation. Collectively, these results suggest that carvedilol might be a possible candidate for management of PD.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Proteína Glial Fibrilar Ácida/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato , Rotenona/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Environ Sci Pollut Res Int ; 29(50): 76135-76143, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35668264

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease (ND) that represents the principal cause of dementia. Effective treatment is still lacking. Without prevention, Alzheimer's disease (AD) incidence is expected to triple within 30 years. The risk increases in highly polluted areas and is positively linked to chronic aluminum (Al) exposure. Canonical Wingless-Int (Wnt)/ß-catenin pathway has been found to play a considerable role in ND pathogenesis. Resins of Boswellia serrata (frankincense) have been used traditionally for their psychoactive activity, in addition to their memory-boosting effects. Boswellic acids (BA) are pentacyclic triterpenes. They have antioxidant, anti-inflammatory, antinociceptive, and immunomodulatory activities. This study aimed to elucidate the role of the Wnt/ß-catenin pathway in BA protective activity against aluminum-induced Alzheimer's disease. For 6 weeks, rats were treated daily with AlCl3 (100 mg/kg/i.p.) either alone or with BA (125 or 250 mg/kg PO). Results indicated that BA significantly improved learning and memory impairments induced by AlCl3 treatment. Moreover, BA treatment significantly decreased acetylcholinesterase levels and reduced amyloid-beta (Aß) expression. In addition, BA ameliorated the increased expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß), inhibited lipid peroxidation, and increased total antioxidants in the brain. Indeed, BA significantly suppressed AlCl3-induced decrease of brain-derived neurotrophic factor, pGSK-3ß (Ser 9), and ß-catenin. BA (250 mg/kg) showed a significant protective effect compared to a lower dose. The results conclude that BA administration modulated the expression of Wnt/ß-catenin pathway-related parameters, contributing to BA's role against Al-induced Alzheimer's disease. Effect of Boswellic acids on AlCl3-induced neurodegenerative changes. ChE cholinesterase, Ach acetylcholine, BDNF brain-derived neurotrophic factor, IL-1ß interleukin-1ß, TNF-α tumor necrosis factor-α.


Assuntos
Doença de Alzheimer , Boswellia , Franquincenso , Doenças Neurodegenerativas , Acetilcolina/uso terapêutico , Acetilcolina/toxicidade , Acetilcolinesterase/metabolismo , Alumínio/toxicidade , Cloreto de Alumínio/toxicidade , Doença de Alzheimer/tratamento farmacológico , Analgésicos/toxicidade , Animais , Anti-Inflamatórios , Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Franquincenso/uso terapêutico , Franquincenso/toxicidade , Interleucina-1beta/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Triterpenos Pentacíclicos/uso terapêutico , Triterpenos Pentacíclicos/toxicidade , Ratos , Triterpenos , Fator de Necrose Tumoral alfa/metabolismo , beta Catenina/metabolismo
8.
J Ethnopharmacol ; 267: 113468, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049345

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sesame (Sesamum indicum, L., Family: Pedaliaceae) is a notable folk medicine in Middle East, Asia and Africa. Many traditional and pharmacological studies have documented the unique nature of sesame oil (SO). SO has been reported to have many pharmacological effects related to the anti-inflammatory and antioxidant capacity of its components. Neuroinflammation and oxidative stress have been the predominant pathogenic events in Alzheimer's disease (AD) which is one of the most common neurodegenerative diseases. AIM OF STUDY: we aimed to explore the neuroprotective effect and the probable mechanisms of SO against aluminium chloride (AlCl3)-induced AD symptoms. MATERIALS AND METHODS: Rats were treated daily with AlCl3 (100 mg/kg/i.p.) either alone or with SO (two different doses) for six weeks. Behavioral (Open-field and Morris water maze tests), histopathological, and biochemical examinations were used to evaluate the neuroprotective effect and the underlying mechanisms of SO against AlCl3-induced AD symptoms. RESULTS: Our results indicated that SO significantly improved learning and memory impairments induced by AlCl3. Indeed, SO treatment significantly restored the elevated level of acetylcholinesterase (AChE) and amyloid beta (Aß) overexpression. Moreover, AlCl3 treatment afforded histopathological changes, increase the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) in addition to mitigation of oxidative stress status in the brain. SO abolished all these abnormalities. Meanwhile, AlCl3 induced activation of p38 mitogen-activated protein kinase (p38MAPK) and decreased brain-derived neurotrophic factor (BDNF) which were inhibited by SO. Furthermore, SO administration modulated the expression of the peroxisome proliferator-activated receptor gamma (PPAR-γ) and nuclear factor kappa B (NF-κB). CONCLUSIONS: In conclusion, the neuroprotective effect of SO involved the modulation of different mechanisms targeting oxidative stress, neuroinflammation, and cognitive functions. SO may modulate different molecular targets involved in AD pathogenesis by alterations of NF-κB/p38MAPK/BDNF/PPAR-γ signalling and this may be attributed to the synergistic effect of their active components.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Memória/efeitos dos fármacos , Degeneração Neural , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Óleo de Gergelim/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/enzimologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/enzimologia , Transtornos da Memória/patologia , Transtornos da Memória/psicologia , NF-kappa B/metabolismo , PPAR gama/metabolismo , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Physiol Behav ; 208: 112571, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175888

RESUMO

Several reports have highlighted the role of vinpocetine in Alzheimer's disease (AD). However, the role of vinpocetine in AD under social isolation conditions has not yet been elucidated. Henceforth, this study aimed to investigate the potential neuroprotective effect of vinpocetine in aluminum-induced AD model associated with social isolation. Social isolation increased the escape latency in Morris water maze (MWM) test, elevated the immobility score and decreased swimming score in forced swimming test (FST) in aluminum treated rats. However, vinpocetine enhanced acquisition in MWM test and exerted anti-depressive effect in FST. The histopathological examination showed marked deterioration in the cerebral cortex and hippocampus of AD isolated rats, while vinpocetine revealed overt improvement. In addition, the levels of amyloid-ß protein (Aß), phosphorylated-tau (Ser396), malondialdehyde (MDA), interleukin 1-beta (IL-1ß), tumor necrosis alpha (TNFα), p- Glycogen synthase kinase-3ß (p-GSK3ß) (Tyr216), and ß-secretase (BACE1) gene expression were increased in socially isolated aluminum treated rats, yet, vinpocetine treatment reversed these deteriorating effects. Hence, this study provides profound insights into the role of vinpocetine in AD particularly in the conditions of social isolation. The effects of vinpocetine might be attributed not only to its antioxidant and anti-inflammatory properties, but also to its suppressing effect on GSK3ß activity and its downstream BACE1.


Assuntos
Alumínio/efeitos adversos , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Isolamento Social/psicologia , Alcaloides de Vinca/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
10.
Can J Physiol Pharmacol ; 97(5): 359-369, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30916578

RESUMO

Hepatic injury is one of the most common complications associated with cisplatin (CIS) use. Recently, liver protection lines are being discovered to stop the hepatic cell death due to inflammatory and apoptotic perturbations. l-arginine has protective effects in several models of liver injury. This study was designed to investigate the possible protective effect of l-arginine against CIS-induced acute hepatic injury in rats. Rats were divided into 4 groups: control, l-arginine, CIS, l-arginine + CIS. Liver function, oxidative stress, inflammatory cytokines, and apoptosis markers were assessed. l-arginine pretreatment protected the liver against CIS-induced toxicity as indicated by significantly alleviating the changes in liver function along with restoration of the antioxidant status. This finding was confirmed with the markedly improved pathological changes. l-arginine showed anti-inflammatory effect through the reduction of liver expression of iNOS, TNF-α, and NF-κß, which were ameliorated to significant levels. Furthermore, l-arginine administration downregulated the liver expression of the apoptotic marker, caspase-3. The results recommend l-arginine as a hepatoprotective agent against CIS toxicity. Mostly, this hepatoprotective effect of l-arginine involved anti-inflammatory and anti-apoptotic activities.


Assuntos
Apoptose/efeitos dos fármacos , Arginina/farmacologia , Cisplatino/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Biomarcadores/metabolismo , Caspase 3/metabolismo , Citoproteção/efeitos dos fármacos , Inflamação/metabolismo , Fígado/patologia , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/metabolismo
11.
J Biochem Mol Toxicol ; 33(3): e22254, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30368989

RESUMO

This study pointed to estimate the possible protective impacts of candesartan and/or epigallocatechin-3-gallate (EGCG) against gentamicin-induced nephrotoxicity. The current work revealed that gentamicin significantly elevated relative kidney weight and the serum level of creatinine and urea. Also, renal level of malondialdehyde was significantly increased with a concurrent decrease in renal glutathione-S-transferase and superoxide dismutase activities. Moreover, renal levels of nuclear factor-kappa B (NF-κB) and p38 mitogen-activated protein kinase (p38-MAPK) were increased together with the elevation of tumor necrosis factor-alpha and interleukin-1 beta levels after gentamicin treatment. In addition, caspase-3 expression was elevated, and histological examination revealed extreme alterations enlightening inflammation, degeneration, and necrosis. Pretreatments with candesartan and/or EGCG attenuated gentamicin-induced nephrotoxicity. Importantly, the altered expression of p38-MAPK and NF-κB may play a significant role in the protective mechanisms exerted by candesartan and EGCG. Coadministration of candesartan and EGCG exhibited more profound response compared with the monotherapy.


Assuntos
Benzimidazóis/farmacologia , Catequina/análogos & derivados , Nefropatias/tratamento farmacológico , NF-kappa B/metabolismo , Transdução de Sinais , Tetrazóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Compostos de Bifenilo , Caspase 3/genética , Catequina/farmacologia , Quimioterapia Combinada , Regulação da Expressão Gênica , Gentamicinas/toxicidade , Inflamação , Interleucina-1beta/genética , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética
12.
Can J Physiol Pharmacol ; 96(12): 1209-1217, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30351976

RESUMO

Nephrotoxicity is one of the serious undesirable effects related to doxorubicin (DOX). Herein, we have investigated the potential protective effect of irbesartan (IRB) against chronic nephrotoxicity induced by DOX, and the implication of different mechanistic pathways underlying these effects. Rats were treated with either DOX (2.5 mg/kg i.p., 3 times/week) for 2 weeks, and (or) IRB (40 mg/kg, daily) for 3 weeks. IRB prohibited nephrotoxicity induced by DOX, which was evident by the increase in blood urea nitrogen and creatinine levels and histopathological changes. IRB improved DOX-induced alterations in oxidative status by diminishing lipid peroxidation and upregulating the antioxidant enzymes. Also, upon DOX treatment, the renal expression of tumor necrosis factor-α, interleukin-6, and caspase-3 were significantly increased; IRB diminished DOX-induced alterations in these parameters. Moreover, DOX significantly decreased the expression level of AMP-activated protein kinase (AMPK). Meanwhile, DOX induced activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt/PKB) and mammalian target of rapamycin (mTOR) pathways that cross talked with AMPK. On the contrary, IRB successfully counterbalanced all these effects. Collectively, these outcomes suggest that the modulation of AMPK, PI3K, Akt, and mTOR pathways plays a critical role in conferring the protective effects of IRB against DOX nephrotoxicity.


Assuntos
Doxorrubicina/farmacologia , Irbesartana/farmacologia , Rim/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/metabolismo , Nitrogênio da Ureia Sanguínea , Caspase 3/metabolismo , Creatinina/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
Naunyn Schmiedebergs Arch Pharmacol ; 391(12): 1327-1338, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30083945

RESUMO

There are increasing evidences supporting the involvement of oxidative stress and neuroinflammation in schizophrenia. Vinpocetine, a nootropic phosphodiesterase-1 inhibitor, was proven to possess anti-oxidant and anti-inflammatory potentials. This research aimed to reveal the likely protective features of vinpocetine against ketamine-induced schizophrenia-like deficits in rats. Additionally, the probable mechanisms contributing to this neuroprotection were also elucidated. Vinpocetine was given (20 mg/kg, i.p.) once a day for 14 days commencing 7 days before administrating ketamine (25 mg/kg i.p.). Risperidone was applied as a reference antipsychotic. Vinpocetine pre-treatment revealed a marked amendment in the hyperlocomotion, anxiety, and short-term memory deficits induced by ketamine in rats. In rats' hippocampus, ketamine induced a drastic increase in tissue levels of dopamine, lipid peroxidation, and pro-inflammatory cytokines along with a significant decrease in glutamate, GABA, SOD, and total anti-oxidant capacity. Also, ketamine induced a reduced level of BDNF together with the potentiation of GSK-3ß/ß-catenin pathway that led to the destruction of ß-catenin. Pre-treatment of ketamine-challenged animals with vinpocetine significantly attenuated oxidative stress, inflammation, and neurotransmitter alterations. Vinpocetine also elevated BDNF expression and prevented ketamine-induced stimulation of the GSK-3ß/ß-catenin signaling. This research presents enlightenments into the role of vinpocetine in schizophrenia. This role may be accomplished through its effect on oxidative stress, inflammation as well as modulating BDNF and the GSK-3ß/ß-catenin pathway.


Assuntos
Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Alcaloides de Vinca/uso terapêutico , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ketamina , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Alcaloides de Vinca/farmacologia , beta Catenina/metabolismo
14.
Naunyn Schmiedebergs Arch Pharmacol ; 391(7): 729-742, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671021

RESUMO

Manganese (Mn) is required for many essential biological processes as well as in the development and functioning of the brain. Extensive accumulation of Mn in the brain may cause central nervous system dysfunction known as manganism, a motor disorder associated with cognitive and neuropsychiatric deficits similar to parkinsonism. Vinpocetine, a synthetic derivative of the alkaloid vincamine, is used to improve the cognitive function in cerebrovascular diseases. It possesses antioxidant and antiinflammatory properties. The present work was designed to explore the potential neuroprotective mechanisms exerted by vinpocetine in the Mn-induced neurotoxicity in rats. Rats were allocated into four groups. First group was given saline. The other three groups were given MnCl2; two of them were treated with either L-dopa, the gold standard antiparkinsonian drug, or vinpocetine. Rats receiving MnCl2 exhibited lengthened catalepsy duration in the grid and bar tests, motor impairment in the open-field test and short-term memory deficit in the Y-maze test. Additionally, histological examination revealed structural alterations and degeneration in different brain regions. Besides, striatal monoamines and mitochondrial complex I contents were declined, apoptotic biomarker caspase-3 expression and acetylcholinesterase activity were elevated. Moreover, oxidative stress and inflammation were detected in the striata. L-dopa or vinpocetine exerted protective effects against MnCl2-induced neurotoxicity. It could be hypothesized that modulation of monoamines, upregulation of mitochondrial complex I, antioxidant, antiinflammatory, and antiapoptotic activities are significant mechanisms underlying the neuroprotective effect of vinpocetine in the Mn-induced neurotoxicity model in rats.


Assuntos
Manganês/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Alcaloides de Vinca/uso terapêutico , Animais , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Caspase 3/metabolismo , Catalepsia/tratamento farmacológico , Catalepsia/metabolismo , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Alcaloides de Vinca/farmacologia
15.
Oxid Med Cell Longev ; 2018: 8296451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541348

RESUMO

The current study aimed to investigate the potential protective role of boswellic acids (BAs) against doxorubicin- (DOX-) induced hepatotoxicity. Also, the possible mechanisms underlying this protection; antioxidant, as well as the modulatory effect on the Nrf2 transcription factor/hem oxygenase-1 (Nrf2/HO-1) pathway in liver tissues, was investigated. Animals were allocated to five groups: group 1: the saline control, group 2: the DOX group, animals received DOX (6 mg/kg, i.p.) weekly for a period of three weeks, and groups 3-5: animals received DOX (6 mg/kg, i.p.) weekly and received protective doses of BAs (125, 250, and 500 mg/kg/day). Treatment with BAs significantly improved the altered liver enzyme activities and oxidative stress markers. This was coupled with significant improvement in liver histopathological features. BAs increased the Nrf2 and HO-1 expression, which provided protection against DOX-induced oxidative insult. The present results demonstrated that BAs appear to scavenge ROS and inhibit lipid peroxidation and DNA damage of DOX-induced hepatotoxicity. The antioxidant efficacy of BAs might arise from its modulation of the Nrf2/HO-1 pathway and thereby protected liver from DOX-induced oxidative injury.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doxorrubicina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Masculino , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos
16.
Neurochem Res ; 40(9): 1810-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26216050

RESUMO

Recent studies have demonstrated a scrutinized association of diabetes mellitus with depressive symptoms and major depression. Glycogen synthase kinase-3 (GSK-3) is a protein kinase enzyme constitutively active in non-stimulated cells and in multiple signalings. Independent lines of research provide a converging evidence for an involvement of GSK-3 in the regulation of behavior and hyperglycemia. The present study revealed that streptozotocin (STZ)-induced diabetic rats were found to show lengthened duration of immobility in the forced-swimming test (FST) and reduced locomotor and exploratory activities in the open-field test (OFT). Imipramine (15 mg/kg), Paroxetine (10 mg/kg) and lithium carbonate (36.94 mg/kg) for 14 days reduced immobility behavior in FST. Paroxetine and lithium carbonate increased the locomotor and exploratory activities, while imipramine decreased the locomotor activity in the OFT. Imipramine and lithium carbonate reduced the blood glucose level while paroxetine didn't alter it. STZ-induced diabetes increased GSK-3 gene expression which was determined using the reverse transcription-quantitative polymerase chain reaction test, while the three drugs decreased its expression. It can be concluded that lithium carbonate and imipramine can control both hyperglycemia and the associated symptoms of depression at the same time by inhibiting GSK-3 activity. On the other hand, paroxetine may only manage the depressive-like symptoms associated with diabetes through modulating the enzyme GSK-3, without changing blood glucose levels.


Assuntos
Glicemia/análise , Quinase 3 da Glicogênio Sintase/metabolismo , Imipramina/farmacologia , Carbonato de Lítio/farmacologia , Paroxetina/farmacologia , Estreptozocina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/fisiopatologia , Glicogênio Sintase Quinase 3 beta , Masculino , Ratos , Ratos Sprague-Dawley , Natação
17.
Neurotoxicology ; 44: 48-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24877722

RESUMO

The relationship between inflammation, oxidative stress and the incidence of depression had been well studied. Indole-3-carbinol (I3C), a natural active compound found in cruciferous vegetables, was shown to have anti-oxidant and anti-inflammatory activities. Therefore, the aim of this study was to investigate the potential protective effects of I3C against clonidine-induced depression-like behaviors in rats. Also, the possible mechanisms underlying this neuroprotection; anti-oxidant, anti-inflammatory as well as the modulatory effect on monoamine levels in brain tissues were investigated. I3C was given orally (50mg/kg) daily over 2 weeks starting 7 days before giving clonidine (0.8mg/kg i.p.). Fluoxetine was used as a standard anti-depressant. Open-field test and forced swimming test were carried out to assess exploratory activity and despair behavior, respectively. I3C showed a significant improvement in the behavioral changes induced by clonidine. As indicators of oxidative stress, clonidine induced a significant reduction in GSH and SOD levels as well as an increase lipid peroxidation level. Tissue levels of pro-inflammatory and apoptotic markers were significantly increased in clonidine group. In addition, monoamine levels; noradrenaline and serotonin, showed a drastic decrease in clonidine group. Also, neuron specific enolase (NSE) was significantly elevated in clonidine group. In contrast, I3C pre-treatment significantly attenuated clonidine-induced oxidative stress, inflammation, apoptosis, decreased NSE expression and increased levels of monoamines. Fluoxetine was used as a standard. In conclusion, the findings of this study suggest that I3C protects against clonidine-induced depression. This neuroprotective effect is partially mediated by its anti-oxidant, anti-inflammatory and anti-apoptotic activities as well as elevating monoamines levels.


Assuntos
Depressão/tratamento farmacológico , Indóis/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Clonidina/toxicidade , Depressão/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Ratos
18.
Neurochem Res ; 38(10): 2227-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23979727

RESUMO

Diazinon is an organophosphorous pesticide with a prominent toxicity on many body organs. Multiple mechanisms contribute to diazinon-induced deleterious effects. Inhibition of acetyl-cholinesterase, cholinergic hyperstimulation, and formation of reactive oxygen species may play a role. On the other hand, melatonin is a pineal hormone with a well-known potent antioxidant activity and a remarkable modulatory effect on many behavioral processes. The present study revealed that oral diazinon administration (25 mg/kg) increased anxiety behavior in rats subjected to elevated plus maze and open-field tests possibly via the induction of changes in brain monoamines levels (dopamine, norepinephrine, and serotonin). Additionally, brain lipid peroxides measured as malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) levels were elevated, while the activity of brain glutathione peroxidase enzyme was reduced by diazinon. Co-administration of oral melatonin (10 mg/kg) significantly attenuated the anxiogenic activity of diazinon, rebalanced brain monoamines levels, decreased brain MDA and TNF-α levels, and increased the activity of brain glutathione peroxidase enzyme.


Assuntos
Comportamento Animal/efeitos dos fármacos , Diazinon/farmacologia , Glutationa Peroxidase/metabolismo , Melatonina/uso terapêutico , Animais , Ansiedade/tratamento farmacológico , Química Encefálica/efeitos dos fármacos , Dopamina/metabolismo , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Melatonina/farmacologia , Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...