Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 529(2): 494-499, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703457

RESUMO

An AU-rich element (ARE) is RNA element that enhances the rapid decay of mRNA. The RNA binding protein HuR stabilizes ARE-mRNA by exporting it to the cytoplasm. In most of cancer cells, HuR is exported to the cytoplasm and ARE-mRNA is stabilized. In addition, the viral gene product E4orf6 exports HuR to stabilize ARE-mRNA in adenovirus-infected cells and the stabilization is required for full virus replication. Previously we showed the oncolytic activity of E4orf6-deleted adenovirus dl355, which can replicate in cancer cells where ARE-mRNA is stabilized. In this study, we examined whether the further enhancement of HuR export can stimulate the replication and the oncolytic activity of dl355. We found that ethanol treatment promoted the cytoplasmic relocalization of HuR in cancer cells. In addition, the replication efficiency of dl355 increased in ethanol-treated cells, and in response, the cytolytic activity of the virus also increased in vitro and in vivo. Upregulation of a cleaved-PARP level in infected cells mediated by ethanol is suggesting that ethanol activated the apoptosis induced by dl355. IVa2 mRNA, the only ARE-mRNA among transcripts of adenovirus was augmented by ethanol treatment. These data indicate that the enhancement of ARE-mRNA stabilization as a result of ethanol treatment upregulates the oncolytic activity of dl355 and suggests that the combined use of an oncolytic adenovirus and ethanol treatment may be a good strategy for cancer therapy.


Assuntos
Adenoviridae/genética , Proteínas E4 de Adenovirus/genética , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Células A549 , Elementos Ricos em Adenilato e Uridilato , Transporte Ativo do Núcleo Celular , Adenoviridae/fisiologia , Proteínas E4 de Adenovirus/metabolismo , Animais , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Feminino , Deleção de Genes , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Replicação Viral
2.
Cancers (Basel) ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403262

RESUMO

AU-rich elements (AREs) are RNA elements that enhance the rapid decay of mRNAs, including those of genes required for cell growth and proliferation. HuR, a member of the embryonic lethal abnormal vision (ELAV) family of RNA-binding proteins, is involved in the stabilization of ARE-mRNA. The level of HuR in the cytoplasm is up-regulated in most cancer cells, resulting in the stabilization of ARE-mRNA. We developed the adenoviruses AdARET and AdAREF, which include the ARE of TNF-α and c-fos genes in the 3'-untranslated regions of the E1A gene, respectively. The expression of the E1A protein was higher in cancer cells than in normal cells, and virus production and cytolytic activities were also higher in many types of cancer cells. The inhibition of ARE-mRNA stabilization resulted in a reduction in viral replication, demonstrating that the stabilization system was required for production of the virus. The growth of human tumors that formed in nude mice was inhibited by an intratumoral injection of AdARET and AdAREF. These results indicate that these viruses have potential as oncolytic adenoviruses in the vast majority of cancers in which ARE-mRNA is stabilized.

3.
Cancers (Basel) ; 12(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408515

RESUMO

Oncolytic virotherapy is a novel approach to cancer therapy. Ad-fosARE is a conditionally replicative adenovirus engineered by inserting AU-rich elements (ARE) in the 3'-untranslated region of the E1A gene. In this study, we examined the oncolytic activity of Ad-fosARE and used it in a synergistic combination with the chemotherapeutic agent paclitaxel (PTX) for treating cancer cells. The expression of E1A was high in cancer cells due to stabilized E1A-ARE mRNA. As a result, the efficiency of its replication and cytolytic activity in cancer cells was higher than in normal cells. PTX treatment increased the cytoplasmic HuR relocalization in cancer cells, enhanced viral replication through elevated E1A expression, and upregulated CAR (Coxsackie-adenovirus receptor) required for viral uptake. Furthermore, PTX altered the instability of microtubules by acetylation and detyrosination, which is essential for viral internalization and trafficking to the nucleus. These results indicate that PTX can provide multiple advantages to the efficacy of Ad-fosARE both in vitro and in vivo, and provides a basis for designing novel clinical trials. Thus, this virus has a lot of benefits that are not found in other oncolytic viruses. The virus also has the potential for treating PXT-resistant cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA