Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3467, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342938

RESUMO

Tetragonal graphene nano-capsule (TGC), a novel stable carbon allotrope of sp2 hybridization is designed and doped with phosphorus (P) to study the O3 and SO2 gas sensitivity via density functional theory calculation. Real frequencies verified the natural existence of both TGC and P-doped TGC (PTGC). Both TGC and PTGC suffer structural deformations due to interaction with O3 and SO2 gases. The amount of charge transfer from the adsorbent to the gas molecule is significantly greater for O3 adsorption than SO2 adsorption. The adsorption energies for TGC + O3 and PTGC + O3 complexes are - 3.46 and - 4.34 eV respectively, whereas for TGC + SO2 and PTGC + SO2 complexes the value decreased to - 0.29 and - 0.30 eV respectively. The dissociation of O3 is observed via interaction with PTGC. A significant variation in electronic energy gap and conductivity results from gas adsorption which can provide efficient electrical responses via gas adsorption. The blue/red shift in the optical response proved to be a way of detecting the types of adsorbed gases. The adsorption of O3 is exothermic and spontaneous whereas the adsorption of SO2 is endothermic and non-spontaneous. The negative change in entropy verifies the thermodynamic stability of all the complexes. QTAIM analysis reveals strong covalent or partial covalent interactions between absorbent and adsorbate. The significant variation in electrical and optical response with optimal adsorbent-gas interaction strength makes both TGC and PTGC promising candidates for O3 and SO2 sensing.

2.
Nanoscale Adv ; 6(4): 1218-1226, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356625

RESUMO

The sensitivity of a RbSnCl3 perovskite 2D layer toward NH3, SO2, and NO toxic gases has been studied via DFT analysis. The tri-atomic layer of RbSnCl3 possessed a tetragonal symmetry with a band gap of 1.433 eV. The adsorption energies of RbSnCl3 for NH3, SO2 and NO are -0.09, -0.43, and -0.56 eV respectively with a recovery time ranging from 3.4 × 10-8 to 3.5 ms. RbSnCl3 is highly sensitive toward SO2 and NO compared to NH3. The adsorption of SO2 and NO results in a significant structural deformation and a semiconductor-to-metal transition of RbSnCl3 perovskite. A high absorption coefficient (>103 cm-1), excessive optical conductivity (>1014 s-1), and a very low reflectivity (<3%) make RbSnCl3 a potential candidate for numerous optoelectronic applications. A significant shift in optical responses is observed through SO2 and NO adsorption, which can enable identification of the adsorbed gases. The studied characteristics signify that RbSnCl3 can be a potential candidate for SO2 and NO detection.

3.
ChemistryOpen ; 13(1): e202300207, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047541

RESUMO

Organometallic perovskites have become one of the most common multifunctional materials in optoelectronic research fields. This research studies density functional theory calculation on orthorhombic hydrazinium lead iodide (N2 H5 PbI3 ) perovskite by replacing A-site cation with a borane ammonium (BH2 NH3 + ) ion. The perovskite showed a significant structural deformation and an orthorhombic to triclinic phase transition due to A-site ion replacement. The N2 H5 PbI3 perovskite has a band gap of 1.64 eV, suitable for the solar cell absorber layer. The band gap has increased to 2.12 eV after complete A-site ion replacement. All structures showed a high absorption coefficient over 104  cm-1 in the low wavelength region and an increase in refractive index from 2.5 to 2.75 due to ion replacement. All the structures showed high optical conductivity of 1015  s-1 order in the blue wavelength region. These new perovskite structures hold the potential to provide a revolution in optoelectronic research.

4.
Phys Chem Chem Phys ; 25(46): 32261-32272, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37988166

RESUMO

Heavy metal removal from polluted environments is one of the vital research areas for better and healthier living. In this research, C8 and B4N4 nanocage-like quantum dots are investigated for heavy metal (Cr) removal applications via density functional theory calculations. The adsorption of up to two Cr atoms has been studied in both air and a water medium. The adsorption of Cr atoms results in significant structural deformation of the adsorbents with a high adsorption energy of -8.74 and -5.77 eV for C8 and B4N4 nanostructures, respectively, which is further increased with an increasing number of Cr atoms. All adsorbents and complex structures showed real vibrational frequencies. Mulliken charge and electrostatic potential analysis reveal a significant charge transfer between adsorbate-adsorbent. The adsorption process causes a decrease in the energy gap of the adsorbents. All the reactions in this study were spontaneous and thermodynamically ordered. QTAIM analysis verifies that the interactions of the adsorbents with Cr atoms are strong partial covalent. The study's findings make C8 and B4N4 nanostructures potential candidates for Cr-detection and removal applications.

5.
Heliyon ; 9(7): e17779, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449187

RESUMO

One of the most popular multifunctional materials in optoelectronic research domains is organometallic perovskites. In this research, DFT calculation on Hydrazinium Lead Iodide (N2H5PbI3, HAPI) perovskite with orthorhombic phase has been studied with distinct exchange-correlation functionals. HAPI showed a slight structural deformation using the LDA CAPZ functionals, revealing the minimum total energy. A very slight change in Mulliken and Hirshfeld charges of each element was observed due to the variation of functionals. The GGA calculations resulted in a perfect orthorhombic phase of HAPI, whereas LDA functional showed slight deformation from the orthorhombic phase. The band gaps of 1.644, 1.633, 1.618, and 1.650 eV were obtained using GGA (PBE, PBEsol, PW91) and LDA (CAPZ) functionals, respectively. HAPI showed a high absorption coefficient of 104 cm-1 order with strong absorption of high energy visible wavelength. A maximum refractive index of 2.8 was observed in the visible wavelength region and a high optical conductivity of over 1015 s-1 suggests that HAPI can be a potential material for numerous optoelectronic research.

6.
R Soc Open Sci ; 9(11): 220778, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36340512

RESUMO

The interesting properties of Mobius structure and boron-carbon-nitride (BCN) inspired this research to study different characteristics of Mobius BCN (MBCN) nanoribbon. The structural stability and vibrational, electrical and optical properties are analysed using the density functional theory. The gas-sensing ability of the modelled MBCN structure was also studied for methane, hydrogen sulfide, ammonia, phosgene and methanol gases. The negative adsorption energy and alteration of electronic bandgap verified that MBCN is very sensitive toward the selected gases. The complex structures showed a high absorption coefficient with strong chemical potential and 7 ps-0.3 ms recovery time. The negative change in entropy signifies that all the complex structures were thermodynamically stable. Among the selected gases, the MBCN showed the strongest interaction with methanol gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...