Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38159044

RESUMO

High-quality genome assemblies across a range of nontraditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here, we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in Drosophila americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to Drosophila novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by 3-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.


Assuntos
Elementos de DNA Transponíveis , Drosophila , Animais , Drosophila/genética , DNA Satélite , Genômica/métodos , Cromossomo Y
2.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645834

RESUMO

High-quality genome assemblies across a range of non-traditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in D. americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to D. novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by three-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.

3.
Mol Cell Proteomics ; 22(8): 100610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391044

RESUMO

Reproductive traits often evolve rapidly between species. Understanding the causes and consequences of this rapid divergence requires characterization of female and male reproductive proteins and their effect on fertilization success. Species in the Drosophila virilis clade exhibit rampant interspecific reproductive incompatibilities, making them ideal for studies on diversification of reproductive proteins and their role in speciation. Importantly, the role of intraejaculate protein abundance and allocation in interspecific divergence is poorly understood. Here, we identify and quantify the transferred male ejaculate proteome using multiplexed isobaric labeling of the lower female reproductive tract before and immediately after mating using three species of the virilis group. We identified over 200 putative male ejaculate proteins, many of which show differential abundance between species, suggesting that males transfer a species-specific allocation of seminal fluid proteins during copulation. We also identified over 2000 female reproductive proteins, which contain female-specific serine-type endopeptidases that showed differential abundance between species and elevated rates of molecular evolution, similar to that of some male seminal fluid proteins. Our findings suggest that reproductive protein divergence can also manifest in terms of species-specific protein abundance patterns.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Masculino , Feminino , Drosophila/metabolismo , Proteômica , Reprodução , Evolução Biológica , Proteínas de Drosophila/metabolismo
4.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094819

RESUMO

Capturing and sequencing small RNAs is standard practice; however, identification of a group of these small RNAs-small interfering RNAs (siRNAs)-has been more difficult. We present smalldisco, a command-line tool for small interfering RNA discovery and annotation from small RNA-seq datasets. smalldisco can distinguish short reads that map antisense to an annotated genomic feature (e.g. exons or mRNAs), annotate these siRNAs, and quantify their abundance. smalldisco also uses the program Tailor to quantify 3' nontemplated nucleotides of siRNAs or any small RNA species. smalldisco and supporting documentation are available for download from GitHub (https://github.com/ianvcaldas/smalldisco) and archived in Zenodo (https://doi.org/10.5281/zenodo.7799621).


Assuntos
Genoma , Genômica , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , RNA-Seq , Software
5.
BMC Genomics ; 22(1): 896, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906087

RESUMO

BACKGROUND: Mating induces behavioral and physiological changes in the arbovirus vector Aedes aegypti, including stimulation of egg development and oviposition, increased survival, and reluctance to re-mate with subsequent males. Transferred seminal fluid proteins and peptides derived from the male accessory glands induce these changes, though the mechanism by which they do this is not known. RESULTS: To determine transcriptome changes induced by seminal proteins, we injected extract from male accessory glands and seminal vesicles (MAG extract) into females and examined female lower reproductive tract (LRT) transcriptomes 24 h later, relative to non-injected controls. MAG extract induced 87 transcript-level changes, 31 of which were also seen in a previous study of the LRT 24 h after a natural mating, including 15 genes with transcript-level changes similarly observed in the spermathecae of mated females. The differentially-regulated genes are involved in diverse molecular processes, including immunity, proteolysis, neuronal function, transcription control, or contain predicted small-molecule binding and transport domains. CONCLUSIONS: Our results reveal that seminal fluid proteins, specifically, can induce gene expression responses after mating and identify gene targets to further investigate for roles in post-mating responses and potential use in vector control.


Assuntos
Aedes , Aedes/genética , Animais , Feminino , Masculino , Mosquitos Vetores/genética , Reprodução/genética , Comportamento Sexual Animal , Transcriptoma
6.
Mol Biol Evol ; 38(3): 986-999, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33035303

RESUMO

In many animal species, females undergo physiological and behavioral changes after mating. Some of these changes are driven by male-derived seminal fluid proteins and are critical for fertilization success. Unfortunately, our understanding of the molecular interplay between female and male reproductive proteins remains inadequate. Here, we analyze the postmating response in a Drosophila species that has evolved strong gametic incompatibility with its sister species; Drosophila novamexicana females produce only ∼1% fertilized eggs in crosses with Drosophila americana males, compared to ∼98% produced in within-species crosses. This incompatibility is likely caused by mismatched male and female reproductive molecules. In this study, we use short-read RNA sequencing to examine the evolutionary dynamics of female reproductive genes and the postmating transcriptome response in crosses within and between species. First, we found that most female reproductive tract genes are slow-evolving compared to the genome average. Second, postmating responses in con- and heterospecific matings are largely congruent, but heterospecific matings induce expression of additional stress-response genes. Some of those are immunity genes that are activated by the Imd pathway. We also identify several genes in the JAK/STAT signaling pathway that are induced in heterospecific, but not conspecific mating. While this immune response was most pronounced in the female reproductive tract, we also detect it in the female head and ovaries. These results show that the female's postmating transcriptome-level response is determined in part by the genotype of the male, and that divergence in male reproductive genes and/or traits can have immunogenic effects on females.


Assuntos
Drosophila/genética , Evolução Molecular , Isolamento Reprodutivo , Animais , Copulação , Drosophila/metabolismo , Feminino , Genitália Feminina/metabolismo , Masculino , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas de Plasma Seminal , Transcrição Gênica , Transcriptoma
7.
Sci Rep ; 10(1): 18168, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097776

RESUMO

Drosophila melanogaster females undergo a variety of post-mating changes that influence their activity, feeding behavior, metabolism, egg production and gene expression. These changes are induced either by mating itself or by sperm or seminal fluid proteins. In addition, studies have shown that axenic females-those lacking a microbiome-have altered fecundity compared to females with a microbiome, and that the microbiome of the female's mate can influence reproductive success. However, the extent to which post-mating changes in transcript abundance are affected by microbiome state is not well-characterized. Here we investigated fecundity and the post-mating transcript abundance profile of axenic or control females after mating with either axenic or control males. We observed interactions between the female's microbiome and her mating status: transcripts of genes involved in reproduction and genes with neuronal functions were differentially abundant depending on the females' microbiome status, but only in mated females. In addition, immunity genes showed varied responses to either the microbiome, mating, or a combination of those two factors. We further observed that the male's microbiome status influences the fecundity of both control and axenic females, while only influencing the transcriptional profile of axenic females. Our results indicate that the microbiome plays a vital role in the post-mating switch of the female's transcriptome.


Assuntos
Drosophila melanogaster/fisiologia , Vida Livre de Germes/fisiologia , Microbiota/fisiologia , Comportamento Sexual Animal/fisiologia , Transcriptoma/imunologia , Animais , Cultura Axênica , Drosophila melanogaster/microbiologia , Feminino , Fertilidade/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Inata/genética , Masculino , RNA-Seq , Reprodução/fisiologia
8.
Sci Rep ; 10(1): 14899, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913240

RESUMO

Aedes aegypti mosquitoes are the primary vectors of numerous viruses that impact human health. As manipulation of reproduction has been proposed to suppress mosquito populations, elucidation of biological processes that enable males and females to successfully reproduce is necessary. One essential process is female sperm storage in specialized structures called spermathecae. Aedes aegypti females typically mate once, requiring them to maintain sperm viably to fertilize eggs they lay over their lifetime. Spermathecal gene products are required for Drosophila sperm storage and sperm viability, and a spermathecal-derived heme peroxidase is required for long-term Anopheles gambiae fertility. Products of the Ae. aegypti spermathecae, and their response to mating, are largely unknown. Further, although female blood-feeding is essential for anautogenous mosquito reproduction, the transcriptional response to blood-ingestion remains undefined in any reproductive tissue. We conducted an RNAseq analysis of spermathecae from unfed virgins, mated only, and mated and blood-fed females at 6, 24, and 72 h post-mating and identified significant differentially expressed genes in each group at each timepoint. A blood-meal following mating induced a greater transcriptional response in the spermathecae than mating alone. This study provides the first view of elicited mRNA changes in the spermathecae by a blood-meal in mated females.


Assuntos
Aedes/fisiologia , Sangue/parasitologia , Mosquitos Vetores/fisiologia , Espermatozoides/metabolismo , Animais , Comportamento Alimentar , Feminino , Masculino , Comportamento Sexual Animal , Transcriptoma , Febre Amarela/parasitologia
9.
Mol Cell Proteomics ; 18(Suppl 1): S145-S158, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30478224

RESUMO

In almost all animals studied to date, the crucial process of egg activation, by which an arrested mature oocyte transitions into an actively developing embryo, initiates with an increase in Ca2+ in the oocyte's cytoplasm. This Ca2+ rise sets off a series of downstream events, including the completion of meiosis and the dynamic remodeling of the oocyte transcriptome and proteome, which prepares the oocyte for embryogenesis. Calcineurin is a highly conserved phosphatase that is activated by Ca2+ upon egg activation and that is required for the resumption of meiosis in Xenopus,, ascidians, and Drosophila. The molecular mechanisms by which calcineurin transduces the calcium signal to regulate meiosis and other downstream events are still unclear. In this study, we investigate the regulatory role of calcineurin during egg activation in Drosophila melanogaster,. Using mass spectrometry, we quantify the phosphoproteomic and proteomic changes that occur during egg activation, and we examine how these events are affected when calcineurin function is perturbed in female germ cells. Our results show that calcineurin regulates hundreds of phosphosites and also influences the abundance of numerous proteins during egg activation. We find calcineurin-dependent changes in cell cycle regulators including Fizzy (Fzy), Greatwall (Gwl) and Endosulfine (Endos); in protein translation modulators including PNG, NAT, eIF4G, and eIF4B; and in important components of signaling pathways including GSK3ß and Akt1. Our results help elucidate the events that occur during the transition from oocyte to embryo.


Assuntos
Calcineurina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Óvulo/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Feminino , Células Germinativas/metabolismo , Masculino , Oócitos/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteômica , Regulação para Cima
10.
Mol Cell Proteomics ; 18(Suppl 1): S6-S22, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552291

RESUMO

The yellow fever mosquito, Aedes aegypti,, transmits several viruses causative of serious diseases, including dengue, Zika, and chikungunya. Some proposed efforts to control this vector involve manipulating reproduction to suppress wild populations or to replace them with disease-resistant mosquitoes. The design of such strategies requires an intimate knowledge of reproductive processes, yet our basic understanding of reproductive genetics in this vector remains largely incomplete. To accelerate future investigations, we have comprehensively catalogued sperm and seminal fluid proteins (SFPs) transferred to females in the ejaculate using tandem mass spectrometry. By excluding female-derived proteins using an isotopic labeling approach, we identified 870 sperm proteins and 280 SFPs. Functional composition analysis revealed parallels with known aspects of sperm biology and SFP function in other insects. To corroborate our proteome characterization, we also generated transcriptomes for testes and the male accessory glands-the primary contributors to Ae. aegypti, sperm and seminal fluid, respectively. Differential gene expression of accessory glands from virgin and mated males suggests that transcripts encoding proteins involved in protein translation are upregulated post-mating. Several SFP transcripts were also modulated after mating, but >90% remained unchanged. Finally, a significant enrichment of SFPs was observed on chromosome 1, which harbors the male sex determining locus in this species. Our study provides a comprehensive proteomic and transcriptomic characterization of ejaculate production and composition and thus provides a foundation for future investigations of Ae. aegypti, reproductive biology, from functional analysis of individual proteins to broader examination of reproductive processes.


Assuntos
Aedes/genética , Aedes/metabolismo , Proteínas de Insetos/metabolismo , Sêmen/metabolismo , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/metabolismo , Estruturas Animais/metabolismo , Animais , Cromossomos/genética , Ejaculação , Ontologia Genética , Masculino , Proteoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Plasma Seminal/genética , Comportamento Sexual Animal , Transcriptoma/genética
11.
G3 (Bethesda) ; 7(9): 3145-3155, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28739599

RESUMO

Postcopulatory sexual selection (PCSS) is a potent evolutionary force that can drive rapid changes of reproductive genes within species, and thus has the potential to generate reproductive incompatibilities between species. Male seminal fluid proteins (SFPs) are major players in postmating interactions, and are important targets of PCSS in males. The virilis subgroup of Drosophila exhibits strong interspecific gametic incompatibilities, and can serve as a model to study the genetic basis of PCSS and gametic isolation. However, reproductive genes in this group have not been characterized. Here we utilize short-read RNA sequencing of male reproductive organs to examine the evolutionary dynamics of reproductive genes in members of the virilis subgroup: D. americana, D. lummei, D. novamexicana, and D. virilis We find that the majority of male reproductive transcripts are testes-biased, accounting for ∼15% of all annotated genes. Ejaculatory bulb (EB)-biased transcripts largely code for lipid metabolic enzymes, and contain orthologs of the D. melanogaster EB protein, Peb-me, which is involved in mating-plug formation. In addition, we identify 71 candidate SFPs, and show that this gene set has the highest rate of nonsynonymous codon substitution relative to testes- and EB-biased genes. Furthermore, we identify orthologs of 35 D. melanogaster SFPs that have conserved accessory gland expression in the virilis group. Finally, we show that several of the SFPs that have the highest rate of nonsynonymous codon substitution reside on chromosomal regions, which contributes to paternal gametic incompatibility between species. Our results show that SFPs rapidly diversify in the virilis group, and suggest that they likely play a role in PCSS and/or gametic isolation.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Evolução Molecular , Reprodução/genética , Animais , Evolução Biológica , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Masculino , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Fenótipo , Especificidade da Espécie , Transcriptoma
12.
G3 (Bethesda) ; 6(12): 4067-4076, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27729433

RESUMO

Understanding the genetic basis of speciation is a central problem in evolutionary biology. Studies of reproductive isolation have provided several insights into the genetic causes of speciation, especially in taxa that lend themselves to detailed genetic scrutiny. Reproductive barriers have usually been divided into those that occur before zygote formation (prezygotic) and after (postzygotic), with the latter receiving a great deal of attention over several decades. Reproductive barriers that occur after mating but before zygote formation [postmating prezygotic (PMPZ)] are especially understudied at the genetic level. Here, I present a phenotypic and genetic analysis of a PMPZ reproductive barrier between two species of the Drosophila virilis group: D. americana and D. virilis This species pair shows strong PMPZ isolation, especially when D. americana males mate with D. virilis females: ∼99% of eggs laid after these heterospecific copulations are not fertilized. Previous work has shown that the paternal loci contributing to this incompatibility reside on two chromosomes, one of which (chromosome 5) likely carries multiple factors. The other (chromosome 2) is fixed for a paracentric inversion that encompasses nearly half the chromosome. Here, I present two results. First, I show that PMPZ in this species cross is largely due to defective sperm storage in heterospecific copulations. Second, using advanced intercross and backcross mapping approaches, I identify genomic regions that carry genes capable of rescuing heterospecific fertilization. I conclude that paternal incompatibility between D. americana males and D. virilis females is underlain by four or more genes on chromosomes 2 and 5.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Reprodução/genética , Isolamento Reprodutivo , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Feminino , Estudos de Associação Genética , Genética Populacional , Genótipo , Escore Lod , Masculino , Fenótipo , Locos de Características Quantitativas , Recombinação Genética
13.
PLoS Negl Trop Dis ; 10(2): e0004451, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26901677

RESUMO

The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0 hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0 hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6 hpm and 24 hpm, while 130 transcripts were down-regulated at 6 hpm and 24 hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24 hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, "priming" her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito.


Assuntos
Aedes/genética , Proteínas de Insetos/genética , Comportamento Sexual Animal , Transcriptoma , Aedes/fisiologia , Animais , Feminino , Proteínas de Insetos/metabolismo , Insetos Vetores/genética , Insetos Vetores/fisiologia , Masculino , Reprodução
14.
Genetics ; 200(1): 331-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769982

RESUMO

The genetic basis of species differences remains understudied. Studies in insects have contributed significantly to our understanding of morphological evolution. Pigmentation traits in particular have received a great deal of attention and several genes in the insect pigmentation pathway have been implicated in inter- and intraspecific differences. Nonetheless, much remains unknown about many of the genes in this pathway and their potential role in understudied taxa. Here we genetically analyze the puparium color difference between members of the virilis group of Drosophila. The puparium of Drosophila virilis is black, while those of D. americana, D. novamexicana, and D. lummei are brown. We used a series of backcross hybrid populations between D. americana and D. virilis to map the genomic interval responsible for the difference between this species pair. First, we show that the pupal case color difference is caused by a single Mendelizing factor, which we ultimately map to an ∼11-kb region on chromosome 5. The mapped interval includes only the first exon and regulatory region(s) of the dopamine N-acetyltransferase gene (Dat). This gene encodes an enzyme that is known to play a part in the insect pigmentation pathway. Second, we show that this gene is highly expressed at the onset of pupation in light brown taxa (D. americana and D. novamexicana) relative to D. virilis, but not in the dark brown D. lummei. Finally, we examine the role of Dat in adult pigmentation between D. americana (heavily melanized) and D. novamexicana (lightly melanized) and find no discernible effect of this gene in adults. Our results demonstrate that a single gene is entirely or almost entirely responsible for a morphological difference between species.


Assuntos
Acetiltransferases/genética , Proteínas de Drosophila/genética , Drosophila/genética , Pigmentação/genética , Acetiltransferases/metabolismo , Animais , Sequência de Bases , Proteínas de Drosophila/metabolismo , Ligação Genética , Especiação Genética , Endogamia , Dados de Sequência Molecular
15.
Int J Evol Biol ; 2012: 285468, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22315696

RESUMO

The virilis group of Drosophila represents a relatively unexplored but potentially useful model to investigate the genetics of speciation. Good resolution of phylogenetic relationships and the ability to obtain fertile hybrid offspring make the group especially promising for analysis of genetic changes underlying reproductive isolation separate from hybrid sterility and inviability. Phylogenetic analyses reveal a close relationship between the sister species, Drosophila americana and D. novamexicana, yet excepting their contemporary allopatric distributions, factors that contribute to reproductive isolation between this species pair remain uncharacterized. A previous report has shown reduced progeny numbers in laboratory crosses between the two species, especially when female D. novamexicana are crossed with male D. americana. We show that the hatch rate of eggs produced from heterospecific matings is reduced relative to conspecific matings. Failure of eggs to hatch, and consequent reduction in hybrid progeny number, is caused by low fertilization success of heterospecific sperm, thus representing a postmating, prezygotic incompatibility. Following insemination, storage and motility of heterospecific sperm is visibly compromised in female D. novamexicana. Our results provide evidence for a mechanism of reproductive isolation that is seldom reported for Drosophila species, and indicate the rapid evolution of postmating, prezygotic reproductive barriers in allopatry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...