Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(13): e2306960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37718555

RESUMO

An aqueous emulsion of conducting polymer is commonly applied on a substrate to form a coating after drying. The coating, however, disintegrates in water. This paper reports a coating prepared using a mixture of two emulsions: an aqueous emulsion of conducting polymer, and an aqueous emulsion of hydrophobic and rubbery chains copolymerized with silane coupling agents. When applied on a substrate and dried, particles of the mixed emulsion merge into a continuous film. While the conducting polymer forms percolated nanocrystals, the silane groups crosslink the rubbery chains and interlink the rubbery chains to the substrate. The percolated nanocrystals make the coating highly conductive. The covalent network of hydrophobic polymer chains stabilizes the coating in water. The high conductivity and stability in water may enable broad applications.

2.
Sci Adv ; 9(26): eadh7742, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390216

RESUMO

Hydrogels are being developed to bear loads. Applications include artificial tendons and muscles, which require high strength to bear loads and low hysteresis to reduce energy loss. However, simultaneously achieving high strength and low hysteresis has been challenging. This challenge is met here by synthesizing hydrogels of arrested phase separation. Such a hydrogel has interpenetrating hydrophilic and hydrophobic networks, which separate into a water-rich phase and a water-poor phase. The two phases arrest at the microscale. The soft hydrophilic phase deconcentrates stress in the strong hydrophobic phase, leading to high strength. The two phases are elastic and adhere through topological entanglements, leading to low hysteresis. For example, a hydrogel of 76 weight % water, made of poly(ethyl acrylate) and poly(acrylic acid), achieves a tensile strength of 6.9 megapascals and a hysteresis of 16.6%. This combination of properties has not been realized among previously existing hydrogels.


Assuntos
Hidrogéis , Músculos , Tendões , Resistência à Tração , Água
3.
Nat Commun ; 12(1): 5287, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489424

RESUMO

A variety of autonomous oscillations in nature such as heartbeats and some biochemical reactions have been widely studied and utilized for applications in the fields of bioscience and engineering. Here, we report a unique phenomenon of moisture-induced electrical potential oscillations on polymers, poly([2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide-co-acrylic acid), during the diffusion of water molecules. Chemical reactions are modeled by kinetic simulations while system dynamic equations and the stability matrix are analyzed to show the chaotic nature of the system which oscillates with hidden attractors to induce the autonomous surface potential oscillation. Using moisture in the ambient environment as the activation source, this self-excited chemoelectrical reaction could have broad influences and usages in surface-reaction based devices and systems. As a proof-of-concept demonstration, an energy harvester is constructed and achieved the continuous energy production for more than 15,000 seconds with an energy density of 16.8 mJ/cm2. A 2-Volts output voltage has been produced to power a liquid crystal display toward practical applications with five energy harvesters connected in series.

4.
Nat Commun ; 12(1): 1823, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758197

RESUMO

The body naturally and continuously secretes sweat for thermoregulation during sedentary and routine activities at rates that can reflect underlying health conditions, including nerve damage, autonomic and metabolic disorders, and chronic stress. However, low secretion rates and evaporation pose challenges for collecting resting thermoregulatory sweat for non-invasive analysis of body physiology. Here we present wearable patches for continuous sweat monitoring at rest, using microfluidics to combat evaporation and enable selective monitoring of secretion rate. We integrate hydrophilic fillers for rapid sweat uptake into the sensing channel, reducing required sweat accumulation time towards real-time measurement. Along with sweat rate sensors, we integrate electrochemical sensors for pH, Cl-, and levodopa monitoring. We demonstrate patch functionality for dynamic sweat analysis related to routine activities, stress events, hypoglycemia-induced sweating, and Parkinson's disease. By enabling sweat analysis compatible with sedentary, routine, and daily activities, these patches enable continuous, autonomous monitoring of body physiology at rest.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Regulação da Temperatura Corporal/fisiologia , Microfluídica/métodos , Suor/metabolismo , Sudorese/fisiologia , Dispositivos Eletrônicos Vestíveis , Corpo Humano , Humanos , Concentração de Íons de Hidrogênio , Hipoglicemia/metabolismo , Levodopa/metabolismo , Microfluídica/instrumentação , Doença de Parkinson/metabolismo , Descanso/fisiologia , Estresse Fisiológico/fisiologia , Suor/fisiologia , Caminhada/fisiologia
5.
Adv Mater ; 33(1): e2006444, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33225539

RESUMO

Nutrients are essential for the healthy development and proper maintenance of body functions in humans. For adequate nourishment, it is important to keep track of nutrients level in the body, apart from consuming sufficient nutrition that is in line with dietary guidelines. Sweat, which contains rich chemical information, is an attractive biofluid for routine non-invasive assessment of nutrient levels. Herein, a wearable sensor that can selectively measure vitamin C concentration in biofluids, including sweat, urine, and blood is developed. Detection through an electrochemical sensor modified with Au nanostructures, LiClO4 -doped conductive polymer, and an enzymes-immobilized membrane is utilized to achieve wide detection linearity, high selectivity, and long-term stability. The sensor allows monitoring of temporal changes in vitamin C levels. The effect of vitamin C intake on the sweat and urine profile is explored by monitoring concentration changes upon consuming different amounts of vitamin C. A longitudinal study of sweat's and urine's vitamin C correlation with blood is performed on two individuals. The results suggest that sweat and urine analysis can be a promising method to routinely monitor nutrition through the sweat sensor and that this sensor can facilitate applications such as nutritional screening and dietary intervention.


Assuntos
Monitorização Fisiológica/instrumentação , Avaliação Nutricional , Dispositivos Eletrônicos Vestíveis , Ácido Ascórbico/análise , Humanos , Suor/química
6.
Sci Adv ; 6(35): eabb8308, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923646

RESUMO

Sweat sensors targeting exercise or chemically induced sweat have shown promise for noninvasive health monitoring. Natural thermoregulatory sweat is an attractive alternative as it can be accessed during routine and sedentary activity without impeding user lifestyles and potentially preserves correlations between sweat and blood biomarkers. We present simple glove-based sensors to accumulate natural sweat with minimal evaporation, capitalizing on high sweat gland densities to collect hundreds of microliters in just 30 min without active sweat stimulation. Sensing electrodes are patterned on nitrile gloves and finger cots for in situ detection of diverse biomarkers, including electrolytes and xenobiotics, and multiple gloves or cots are worn in sequence to track overarching analyte dynamics. Direct integration of sensors into gloves represents a simple and low-overhead scheme for natural sweat analysis, enabling sweat-based physiological monitoring to become practical and routine without requiring highly complex or miniaturized components for analyte collection and signal transduction.

7.
ACS Sens ; 5(6): 1831-1837, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32429661

RESUMO

The tobacco epidemic is a public health threat that has taken a heavy toll of lives around the globe each year. Smoking affects both the smokers and those who are exposed to secondhand smoke, and careful tracking of exposure can be key to mitigating the potential hazards. For smokers, the variation of chemical compositions between commercial cigarettes has led to ambiguity in estimating the health risks, both for active smokers and others involuntarily exposed to tobacco smoke and byproducts. In this regard, sweat possesses an attractive opportunity to monitor smoke exposure due to sweat's abundance in biomolecules and its great accessibility. Here, we present a wearable sweat band to monitor nicotine, a prominent ingredient in cigarettes, as a viable way to quantitatively assess a wearer's exposure to smoking. Both smokers and normal subjects are tested to demonstrate the use of this device for smoke-related health monitoring. Our results exhibit confirmable and elevated nicotine levels in sweat for subjects inhaling cigarette smoke. This continuous and personalized sweat sensing device is leverage to monitor smoke pollution for a potentially broad population.


Assuntos
Produtos do Tabaco , Poluição por Fumaça de Tabaco , Dispositivos Eletrônicos Vestíveis , Humanos , Nicotina/análise , Suor/química , Poluição por Fumaça de Tabaco/análise
8.
Sci Adv ; 5(8): eaaw9906, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31453333

RESUMO

Recent technological advancements in wearable sensors have made it easier to detect sweat components, but our limited understanding of sweat restricts its application. A critical bottleneck for temporal and regional sweat analysis is achieving uniform, high-throughput fabrication of sweat sensor components, including microfluidic chip and sensing electrodes. To overcome this challenge, we introduce microfluidic sensing patches mass fabricated via roll-to-roll (R2R) processes. The patch allows sweat capture within a spiral microfluidic for real-time measurement of sweat parameters including [Na+], [K+], [glucose], and sweat rate in exercise and chemically induced sweat. The patch is demonstrated for investigating regional sweat composition, predicting whole-body fluid/electrolyte loss during exercise, uncovering relationships between sweat metrics, and tracking glucose dynamics to explore sweat-to-blood correlations in healthy and diabetic individuals. By enabling a comprehensive sweat analysis, the presented device is a crucial tool for advancing sweat testing beyond the research stage for point-of-care medical and athletic applications.


Assuntos
Glucose/análise , Microfluídica/métodos , Potássio/análise , Sódio/análise , Suor/química , Técnicas Biossensoriais , Diabetes Mellitus/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Íons/análise , Potássio/química , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...