Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202660

RESUMO

In this paper, we demonstrate the use of polymer dispersed liquid crystal (PDLC) imprinted with a microlens array (MLA) via solution process to improve the outcoupling efficiency of organic light emitting diodes (OLEDs). The PDLC, well known for its scattering effect, is an excellent technology for improving the outcoupling efficiency of OLEDs. Additionally, we introduce a simple spin-coating process to fabricate PDLC which is adaptable for future solution-processed OLEDs. The MLA-imprinted PDLC applied OLED shows an enhancement factor of 1.22 in outcoupling efficiency which is a 37.5% increase compared to the existing PDLC techniques without changing the electrical properties of the OLED. Through this approach, we can expect the roll-to-roll based extremely flexible OLED, and with further research on pattering PDLC by various templates, higher outcoupling efficiency is achievable through a simple UV irradiation process.

2.
Materials (Basel) ; 15(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36013707

RESUMO

In this paper, we propose a single-layer thin-film color glass manufacturing process for building-integrated photovoltaics (BIPV) with excellent aesthetics and high transmittance, through a solution process using pearlescent pigments. As a matrix for the color solution, ethylene vinyl acetate (EVA), which serves as an encapsulant and adhesive for the photovoltaic module (PV), was dissolved and used as a matrix for the color solution. The color glass produced is excellent in securing the aesthetics of buildings, has a high transmittance of 90% or more, outputs a maximum solar power generation efficiency of 91% from a solar cell, and can minimize the deterioration of power generation efficiency. In addition, the characteristics do not change over time, so it is suitable as color glass for BIPV. Through this study, the solution-based color glass manufacturing process for BIPV using dissolved EVA as a matrix forms a single-layer thin film with good color extensions. The choice of EVA as a matrix makes it possible for color glass to be easily attached to a solar panel using a heat press method. This proposed technique makes it easier and simpler to manufacture color glass as compared to the physical vapor deposition process. The adoption of this solution process technique to fabricate pearlescent pigment-based color glass can effectively reduce the time and cost of the process, so it is expected to be applied to the low-cost BIPV market with excellent aesthetics and high transmittance.

3.
Materials (Basel) ; 15(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35407957

RESUMO

In this study, we propose a solution process for realizing colored glass for building integrated photovoltaic (BIPV) systems by spin coating a color solution composed of pearlescent pigments mixed in a Norland Optical Adhesive (NOA) matrix. Color solutions are made from mixing pearlescent pigments in NOA63. Compared to a physical vapor deposition process, color coatings are achieved by spin coating in a relatively simple and inexpensive process at room temperature. The optical properties can be easily controlled by adjusting the spin coating speed and the concentration of the pearlescent pigments. The produced colored glass achieved a high transmittance of 85% or more in the visible wavelength range, except for the wavelength spectrum exhibiting the maximum reflectance. In addition, we propose a one-step lamination process of colored glass on a solar cell by leveraging on the adhesive property of the NOA matrix. This eliminates the cost and process of additional ethylene vinyl acetate (EVA) layer or other materials used in the conventional lamination process. The colored glass produced through this study has stability that does not change its properties over time. Therefore, it is expected to be applied to the BIPV solar module market where aesthetics and energy efficiency are required.

4.
Materials (Basel) ; 14(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067184

RESUMO

This study proposes front colored glass for building integrated photovoltaic (BIPV) systems based on multi-layered derivatives of glass/MoO3/Al2O3 with a process technology developed to realize it. Molybdenum oxide (MoO3) and aluminum oxide (Al2O3) layers are selected as suitable candidates to achieve thin multi-layer color films, owing to the large difference in their refractive indices. We first investigated from a simulation based on wave optics that the glass/MoO3/Al2O3 multi-layer type offers more color design freedom and a cheaper fabrication process when compared to the glass/Al2O3/MoO3 multi-layer type. Based on the simulation, bright blue and green were primarily fabricated on glass. It is further demonstrated that brighter colors, such as yellow and pink, can be achieved secondarily with glass/MoO3/Al2O3/MoO3 due to enhanced multi-interfacial reflections. The fabricated color glasses showed the desired optical properties with a maximum transmittance exceeding 80%. This technology exhibits promising potential in commercial BIPV system applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...