Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313731, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437162

RESUMO

Light-activated chemiresistors offer a powerful approach to achieving lower-temperature gas sensing with unprecedented sensitivities. However, an incomplete understanding of how photoexcited charge carriers enhance sensitivity obstructs the rational design of high-performance sensors, impeding the practical utilization under commonly accessible light sources instead of ultraviolet or higher-energy sources. Here, a rational approach is presented to modulate the electronic properties of the parent metal oxide phase, exemplified by this model system of Bi-doped In2 O3 nanofibers decorated with Au nanoparticles (NPs) that exhibit superior NO2 sensing performance. Bi doping introduces mid-gap energy levels into In2 O3 , promoting photoactivation even under visible blue light. Additionally, green-absorbing plasmonic Au NPs facilitate electron transfer across the heterojunction, extending the photoactive region toward the green light. It is revealed that the direct involvement of photogenerated charge carriers in gas adsorption and desorption processes is pivotal for enhancing gas sensing performance. Owing to the synergistic interplay between the Bi dopants and the Au NPs, the Au-Bix In2-x O3 (x = 0.04) sensing layers attain impressive response values (Rg /Ra  = 104 at 0.6 ppm NO2 ) under green light illumination and demonstrate practical viability through evaluation under simulated mixed-light conditions, all of which significantly outperforms previously reported visible light-activated NO2 sensors.

2.
Adv Mater ; 36(12): e2301080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37084408

RESUMO

The global energy crisis caused by the overconsumption of nonrenewable fuels has prompted researchers to develop alternative strategies for producing electrical energy. In this review, a fascinating strategy that simply utilizes water, an abundant natural substance throughout the globe and even in air as moisture, as a power source is introduced. The concept of the hydrovoltaic electricity generator (HEG) proposed herein involves generating an electrical potential gradient by exposing the two ends of the HEG device to dissimilar physicochemical environments, which leads to the production of an electrical current through the active material. HEGs, with a large variety of viable active materials, have much potential for expansion toward diverse applications including permanent and/or emergency power sources. In this review, representative HEGs that generate electricity by the mechanisms of diffusion, streaming, and capacitance as case studies for building a fundamental understanding of the electricity generation process are discussed. In particular, by comparing the use and absence of hygroscopic materials, HEG mechanism studies to establish active material design principles are meticulously elucidated. The review with future perspectives on electrode design using conducting nanomaterials, considerations for high performance device construction, and potential impacts of the HEG technology in improving the livelihoods are reviewed.

3.
ACS Nano ; 18(2): 1371-1380, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38060408

RESUMO

Respiratory masks are the primary and most effective means of protecting individuals from airborne hazards such as droplets and particulate matter during public engagements. However, conventional electrostatically charged melt-blown microfiber masks typically require thick and dense membranes to achieve high filtration efficiency, which in turn cause a significant pressure drop and reduce breathability. In this study, we have developed a multielectrospinning system to address this issue by manipulating the pore structure of nanofiber networks, including the use of uniaxially aligned nanofibers created via an electric-field-guided electrospinning apparatus. In contrast to the common randomly collected microfiber membranes, partially aligned dual-nanofiber membranes, which are fabricated via electrospinning of a random 150 nm nanofiber base layer and a uniaxially aligned 450 nm nanofiber spacer layer on a roll-to-roll collector, offer an efficient way to modulate nanofiber membrane pore structures. Notably, the dual-nanofiber configuration with submicron pore structure exhibits increased fiber density and decreased volume density, resulting in an enhanced filtration efficiency of over 97% and a 50% reduction in pressure drop. This leads to the highest quality factor of 0.0781. Moreover, the submicron pore structure within the nanofiber networks introduces an additional sieving filtration mechanism, ensuring superior filtration efficiency under highly humid conditions and even after washing with a 70% ethanol solution. The nanofiber mask provides a sustainable solution for safeguarding the human respiratory system, as it effectively filters and inactivates human coronaviruses while utilizing 130 times fewer polymeric materials than melt-blown filters. This reusability of our filters and their minimum usage of polymeric materials would significantly reduce plastic waste for a sustainable global society.


Assuntos
Filtros de Ar , Nanofibras , Humanos , Nanofibras/química , Filtração , Polímeros
4.
Adv Sci (Weinh) ; 10(35): e2302830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852942

RESUMO

Biological systems are composed of hierarchical structures made of a large number of proteins. These structures are highly sophisticated and challenging to replicate using artificial synthesis methods. To exploit these structures in materials science, biotemplating is used to achieve biocomposites that accurately mimic biological structures and impart functionality of inorganic materials, including electrical conductivity. However, the biological scaffolds used in previous studies are limited to stereotypical and simple morphologies with little synthetic diversity because of a lack of control over their morphologies. This study proposes that the specific protein assemblies within the cell-derived extracellular matrix (ECM), whose morphological features are widely tailorable, can be employed as versatile biotemplates. In a typical procedure, a fibrillar assembly of fibronectin-a constituent protein of the ECM-is metalized through an antibody-guided biotemplating approach. Specifically, the antibody-bearing nanogold is attached to the fibronectin through antibody-antigen interactions, and then metals are grown on the nanogold acting as a seed. The biomimetic structure can be adapted for hydrogen production and sensing after improving its electrical conductivity through thermal sintering or additional metal growth. This study demonstrates that cell-derived ECM can be an attractive option for addressing the diversity limitation of a conventional biotemplate.


Assuntos
Matriz Extracelular , Fibronectinas , Fibronectinas/metabolismo , Matriz Extracelular/metabolismo , Anticorpos/metabolismo , Biomimética
5.
ACS Nano ; 17(23): 23347-23358, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801574

RESUMO

Single-atom catalysts feature interesting catalytic activity toward applications that rely on surface reactions such as electrochemical energy storage, catalysis, and gas sensors. However, conventional synthetic approaches for such catalysts require extended periods of high-temperature annealing in vacuum systems, limiting their throughput and increasing their production cost. Herein, we report an ultrafast flash-thermal shock (FTS)-induced annealing technique (temperature > 2850 °C, <10 ms duration, and ramping/cooling rates of ∼105 K/s) that operates in an ambient-air environment to prepare single-atom-stabilized N-doped graphene. Melamine is utilized as an N-doping source to provide thermodynamically favorable metal-nitrogen bonding sites, resulting in a uniform and high-density atomic distribution of single metal atoms. To demonstrate the practical utility of the single-atom-stabilized N-doped graphene produced by the FTS method, we showcased their chemiresistive gas sensing capabilities and electrocatalytic activities. Overall, the air-ambient, ultrafast, and versatile (e.g., Co, Ni, Pt, and Co-Ni dual metal) FTS method provides a general route for high-throughput, large area, and vacuum-free manufacturing of single-atom catalysts.

6.
ACS Sens ; 8(9): 3417-3427, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606544

RESUMO

This study introduces a promising technique to enhance the sensitivity of p-type semiconductors in gas-sensing applications. By utilizing a glycerate-templated synthesis approach, a unique hierarchical W-doped Co3O4 yolk-shell sphere (YSS)-based sensor was developed, exhibiting exceptional sensitivity toward acetone gas. The synthesized YSSs feature a yolk-shell structure with a diameter of approximately 500 nm and a large surface area of 117.46 m2/g, which allows for efficient gas interaction and high sensitivity toward acetone gas. Furthermore, the incorporation of tungsten (W), a non-noble metal, as a dopant significantly enhances the surface activity of Co3O4, leading to a remarkably high response of 16.5 toward 5 ppm acetone, which is substantially higher than that of the pure Co3O4 YSS (2.9). The W-doped Co3O4 YSS also exhibits excellent selectivity to other interfering gases and the ability to detect ultralow concentrations of acetone as low as 10 ppb. The proposed non-noble metal doping strategy presents a practical solution for enhancing the sensitivity and selectivity of p-type semiconductor-based gas sensors. This approach holds great potential for practical gas-sensing applications due to their affordability and abundance, making them a cost-effective and versatile alternative to noble metal-catalyzed sensors.


Assuntos
Acetona , Tungstênio , Cobalto , Citoplasma , Gases
7.
ACS Nano ; 17(13): 12188-12199, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37229643

RESUMO

The unorthodox surface chemistry of high-entropy alloy nanoparticles (HEA-NPs), with numerous interelemental synergies, helps catalyze a variety of essential chemical processes, such as the conversion of CO2 to CO, as a sustainable path to environmental remediation. However, the risk of agglomeration and phase separation in HEA-NPs during high-temperature operations are lasting issues that impede their practical viability. Herein, we present HEA-NP catalysts that are tightly sunk in an oxide overlayer for promoting the catalytic conversion of CO2 with exceptional stability and performance. We demonstrated the controlled formation of conformal oxide overlayers on carbon nanofiber surfaces via a simple sol-gel method, which facilitated a large uptake of metal precursor ions and helped to decrease the reaction temperature required for nanoparticle formation. During the rapid thermal shock synthesis process, the oxide overlayer would also impede nanoparticle growth, resulting in uniformly distributed small HEA-NPs (2.37 ± 0.78 nm). Moreover, these HEA-NPs were firmly socketed in the reducible oxide overlayer, enabling an ultrastable catalytic performance involving >50% CO2 conversion with >97% selectivity to CO for >300 h without extensive agglomeration. Altogether, we establish the rational design principles for the thermal shock synthesis of high-entropy alloy nanoparticles and offer a helpful mechanistic perspective on how the oxide overlayer impacts the nanoparticle synthesis behavior, providing a general platform for the designed synthesis of ultrastable and high-performance catalysts that could be utilized for various industrially and environmentally relevant chemical processes.

8.
ACS Nano ; 17(10): 8866-8898, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37126761

RESUMO

The emergence and development of thick electrodes provide an efficient way for the high-energy-density supercapacitor design. Wood is a kind of biomass material with porous hierarchical structure, which has the characteristics of a straight channel, uniform pore structure, good mechanical strength, and easy processing. The wood-inspired low-tortuosity and vertically aligned channel architecture are highly suitable for the construction of thick electrochemical supcapacitor electrodes with high energy densities. This review summarizes the design concepts and processing parameters of thick electrode supercapacitors inspired by natural woods, including wood-based pore structural design regulation, electric double layer capacitances (EDLCs)/pseudocapacitance construction, and electrical conductivity optimization. In addition, the optimization strategies for preparing thick electrodes with wood-like structures (e.g., 3D printing, freeze-drying, and aligned-low tortuosity channels) are also discussed in detail. Further, this review presents current challenges and future trends in the design of thick electrodes for supercapacitors with wood-inspired pore structures. As a guideline, the brilliant blueprint optimization will promote sustainable development of wood-inspired structure design for thick electrodes and broaden the application scopes.

9.
ACS Nano ; 17(12): 11087-11219, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37219021

RESUMO

Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.

10.
ACS Nano ; 16(12): 19755-19788, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36449447

RESUMO

Smart wearable electronic textiles (e-textiles) that can detect and differentiate multiple stimuli, while also collecting and storing the diverse array of data signals using highly innovative, multifunctional, and intelligent garments, are of great value for personalized healthcare applications. However, material performance and sustainability, complicated and difficult e-textile fabrication methods, and their limited end-of-life processability are major challenges to wide adoption of e-textiles. In this review, we explore the potential for sustainable materials, manufacturing techniques, and their end-of-the-life processes for developing eco-friendly e-textiles. In addition, we survey the current state-of-the-art for sustainable fibers and electronic materials (i.e., conductors, semiconductors, and dielectrics) to serve as different components in wearable e-textiles and then provide an overview of environmentally friendly digital manufacturing techniques for such textiles which involve less or no water utilization, combined with a reduction in both material waste and energy consumption. Furthermore, standardized parameters for evaluating the sustainability of e-textiles are established, such as life cycle analysis, biodegradability, and recyclability. Finally, we discuss the current development trends, as well as the future research directions for wearable e-textiles which include an integrated product design approach based on the use of eco-friendly materials, the development of sustainable manufacturing processes, and an effective end-of-the-life strategy to manufacture next generation smart and sustainable wearable e-textiles that can be either recycled to value-added products or decomposed in the landfill without any negative environmental impacts.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Eletrônica
11.
ACS Nano ; 16(11): 19451-19463, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36374248

RESUMO

The massive production of polymer-based respiratory masks during the COVID-19 pandemic has rekindled the issue of environmental pollution from nonrecyclable plastic waste. To mitigate this problem, conventional filters should be redesigned with improved filtration performance over the entire operational life while also being naturally degradable at the end. Herein, we developed a functional and biodegradable polymeric filter membrane consisting of a polybutylene adipate terephthalate (PBAT) matrix blended with cetyltrimethylammonium bromide (CTAB) and montmorillonite (MMT) clay, whose surface properties have been modified through cation exchange reactions for good miscibility with PBAT in an organic solvent. Particularly, the spontaneous evolution of a partial core-shell structure (i.e., PBAT core encased by CTAB-MMT shell) during the electrospinning process amplified the triboelectric effect as well as the antibacterial/antiviral activity that was not observed in naive PBAT. Unlike the conventional face mask filter that relies on the electrostatic adsorption mechanism, which deteriorates over time and/or due to external environmental factors, the PBAT@CTAB-MMT nanofiber membrane (NFM)-based filter continuously retains electrostatic charges on the surface due to the triboelectric effect of CTAB-MMT. As a result, the PBAT@CTAB-MMT NFM-based filter showed high filtration efficiencies (98.3%, PM0.3) even at a low differential pressure of 40 Pa or less over its lifetime. Altogether, we not only propose an effective and practical solution to improve the performance of filter membranes while minimizing their environmental footprint but also provide valuable insight into the synergetic functionalities of organic-inorganic hybrid materials for applications beyond filter membranes.


Assuntos
COVID-19 , Nanofibras , Humanos , Cetrimônio , Nanofibras/química , Pandemias , Polímeros/química , Eletricidade Estática
12.
ACS Sens ; 7(11): 3540-3550, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36322779

RESUMO

Although p-type semiconductors exhibit highly selective and stable chemiresistive gas sensing performances compared to conventional n-type semiconductors, their low sensitivity had long impeded their practical development. In this work, we developed highly porous Co3O4/CoMoO4 heterostructure nanosheets (NSs) with enhanced sensitivity and superior stability toward acetone gas through a facile solution-based approach with Mo-impregnated Co-based metal-organic frameworks as the starting material. The spontaneous formation of a large number of p-p heterojunctions at the Co3O4-CoMoO4 interface would facilitate the adsorption of oxygen and acetone molecules, as verified by density functional theory calculations. Consequently, experimental results showed that the Co3O4/CoMoO4 NSs have a greatly enhanced response of 8.5 toward 5 ppm acetone, which is 7.1 times higher than that of pure Co3O4 NS, without involving any noble metal catalysts. Moreover, the limit of detection of the Co3O4/CoMoO4 NSs was as low as 10 ppb. Altogether, we propose that our synthetic approach for the engineering of p-p heterojunctions is an effective strategy for the future development of highly practical and sensitive gas sensors based on p-type semiconductors.

13.
ACS Nano ; 16(11): 18133-18142, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36108309

RESUMO

The process of exsolution for the synthesis of strongly anchored metal nanoparticles (NPs) on host oxide lattices has been proposed as a promising strategy for designing robust catalyst-support composite systems. However, because conventional exsolution processes occur in harsh reducing environments at high temperatures for long periods of time, the choice of support materials and dopant metals are limited to those with inherently high thermal and chemical stability. Herein, we report the exsolution of a series of noble metal catalysts (Pt, Rh, and Ir) from metal oxide nanofibers (WO3 NFs) supports in an entirely ambient environment induced by intense pulsed light (IPL)-derived momentary photothermal treatment (>1000 °C). Since the exsolution process spans an extremely short period of time (<20 ms), unwanted structural artifacts such as decreased surface area and phase transition of the support materials are effectively suppressed. At the same time, exsolved NPs (<5 nm) with uniform size distributions could successfully be formed. To prove the practical utility of exsolved catalytic NPs functionalized on WO3 NFs, the chemiresistive gas sensing characteristics of exsolved Pt-decorated WO3 NFs were analyzed, exhibiting high durability (>200 cyclic exposures), enhanced response (Rair/Rgas > 800 @ 1 ppm/350 °C), and selectivity toward H2S target gas. Altogether, we successfully demonstrated that ultrafast exsolution within a few milliseconds could be induced in ambient conditions using the IPL-derived momentary photothermal treatment and contributed to expanding the practical viability of the exsolution-based synthetic approaches for the production of highly stable catalyst systems.

14.
ACS Appl Mater Interfaces ; 14(24): 28378-28388, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35679507

RESUMO

While H2 is indispensable as a green fuel source, it is highly flammable and explosive. Because it is difficult to detect due to its lack of odor and color, a solution for proper monitoring of H2 leakage is essential to ensure safe handling. To this end, we have successfully fabricated hollow Pd-Sn alloy nanotubes (NTs) with a Brunauer-Emmett-Teller surface area of 223.0 m2/g through electrospinning and a subsequent etching method, which is the first demonstration of synthesizing Pd-based hollow alloy nanofibers with ultrafine grain sizes. We found that the alloying of Pd with Sn could effectively prevent degradation of the sensing performance upon the α-ß phase transition during hydrogen detection. Besides, the highly porous structure with smaller nanograins offered more exposed active sites and higher gas accessibility to bulk materials. The resultant Pd-Sn NTs exhibited excellent sensitivity toward H2 (0.00005-3%). Notably, the limit of detection of 0.0001% is an outstanding achievement on H2 sensing among state-of-the-art H2 sensors. Moreover, when exposed to a high concentration of H2 (3%), Pd-Sn NTs showed excellent cycling stability with a standard deviation of 0.07% and a sensitivity of 9.27%. These obtained sensing results indicate that Pd-Sn NTs can be used as a highly sensitive and stable H2 gas sensor at room temperature (25 °C).

15.
Adv Mater ; 34(27): e2201109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35502659

RESUMO

Ex-solution catalysts, in which a host oxide is decorated with confined metallic nanoparticles, have exhibited breakthrough activity in various catalytic reactions. However, catalysts prepared by conventional ex-solution processes are limited by the low surface area of host oxides, the limited solubility of dopants, and the incomplete conversion of doped cations into metal catalysts. Here, the design of the host oxide structure is reconceptualized using a metal-organic framework (MOF) as an oxide precursor that can absorb a large quantity of ions while also promoting ex-solution at low temperatures (400-500 °C). The MOF-derived metal oxide host can readily incorporate metal cations, from which catalytic nanoparticles can be uniformly ex-solved owing to the short diffusion length in the nano-sized oxides. The distinct ex-solution behaviors of Pt, Pd, and Rh, and their bimetallic combinations are investigated. The MOF-driven mesoporous ZnO particles functionalized with PdPt catalysts ex-solved at 500 °C show benchmark-level of acetone oxidation activity as well as acetone-sensing characteristics by accelerating both oxygen chemisorption and acetone dissociation. Their findings provide a new route for the preparation of highly active catalysts by engineering the architecture and composition of the host oxide to facilitate the ex-solution process rationally.

16.
Chem Eng J ; 444: 136460, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35463870

RESUMO

Most respiratory masks are made of fabrics, which only capture the infectious virus carriers into the matrix. However, these contagious viruses stay active for a long duration (∼7 days) within the fabric matrix possibly inducing post-contact transmissions. Moreover, conventional masks are vulnerable to bacterial growth with prolonged exposure to exhaled breaths. Herein, we combined violacein, a naturally-occurring antimicrobial agent, with porous nanofiber membranes to develop a series of functional filters that autonomously sterilizes viruses and bacteria. The violacein-embedded membrane inactivates viruses within 4 h (99.532 % reduction for influenza and 99.999 % for human coronavirus) and bacteria within 2 h (75.5 % reduction). Besides, its nanofiber structure physically filters out the nanoscale (<0.8 µm) and micron-scale (0.8 µm - 3 µm) particulates, providing high filtration efficiencies (99.7 % and 100 % for PM 1.0 and PM 10, respectively) with long-term stability (for 25 days). In addition, violacein provides additional UV-resistant property, which protects the skin from sunlight. The violacein-embedded membrane not only proved the sterile efficacy of microbe extracted pigments for biomedical products but also provided insights to advance the personal protective equipment (PPE) to fight against contagious pathogens.

17.
Adv Mater ; 34(24): e2201734, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35404527

RESUMO

Solar energy has seen 180 years of development since the discovery of the photovoltaic effect, having achieved the most successful commercialization in the energy-harvesting fields. Despite its long history, even the most state-of-the-art photovoltaics remain confined to solid-state devices, limiting spatial and light utilization efficiencies. Herein, a liquid-state photoenergy harvester based on a photoacid (PA), a chemical that releases protons upon light irradiation and recombines with them in the dark through a fully reversible reaction, is demonstrated. Asymmetric light exposure on a PA solution contained in a transparent tube generates a pH gradient (ΔpH = 2) along the exposed and dark regions, which charges the Nernst potential up to 0.7 V across the two electrodes embedded at each end, as if a capacitor. Owing to the reversibility of PAs, a PA-driven liquid-state photoenergy harvester (PLPH) generates capacitive currents up to 0.72 mA m-2  on an irradiation. Notably, the transparent nature of the PLPH enables vertical stacking up to 25 units, which multiplies the light-harvesting efficiencies by over 1000%. This unique approach provides a new route to harness solar energy with a form-factor-free design that maximizes spatial and light-use efficiencies.

18.
Adv Mater ; 34(10): e2105869, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34984744

RESUMO

Though highly promising as powerful gas sensors, oxide semiconductor chemiresistors have low surface reactivity, which limits their selectivity, sensitivity, and reaction kinetics, particularly at room temperature (RT) operation. It is proposed that a hybrid design involving the nanostructuring of oxides and passivation with selective gas filtration layers can potentially overcome the issues with surface activity. Herein, unique bi-stacked heterogeneous layers are introduced; that is, nanostructured oxides covered by conformal nanoporous gas filters, on ultrahigh-density nanofiber (NF) yarns via sputter deposition with indium tin oxide (ITO) and subsequent self-assembly of zeolitic imidazolate framework (ZIF-8) nanocrystals. The NF yarn composed of ZIF-8-coated ITO films can offer heightened surface activity at RT because of high porosity, large surface area, and effective screening of interfering gases. As a case study, the hybrid sensor demonstrated remarkable sensing performances characterized by high NO selectivity, fast response/recovery kinetics (>60-fold improvement), and large responses (12.8-fold improvement @ 1 ppm) in comparison with pristine yarn@ITO, especially under highly humid conditions. Molecular modeling reveals an increased penetration ratio of NO over O2 to the ITO surface, indicating that NO oxidation is reliably prevented and that the secondary adsorption sites provided by the ZIF-8 facilitate the adsorption/desorption of NO, both to and from ITO.

19.
Adv Healthc Mater ; 11(9): e2100828, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34050610

RESUMO

A facile method is described herein for generating a mineral gradient in a biodegradable polymer scaffold. The gradient is achieved by swelling a composite film made of polycaprolactone (PCL) and hydroxyapatite (HAp) nanoparticles with a PCL solution. During the swelling process, the solvent and PCL polymer chains diffuse into the composite film, generating a gradient in HAp density at their interface. The thickness of the mineral gradient can be tuned by varying the extent of swelling to match the length scale of the natural tendon-to-bone attachment (20-60 µm). When patterned with an array of funnel-shaped channels, the mineral gradient presents stem cells with spatial gradations in both biochemical cues (e.g., osteoinductivity and conductivity associated with the HAp nanoparticles) and mechanical cues (e.g., substrate stiffness) to stimulate their differentiation into a graded distribution of cell phenotypes. This new class of biomimetic scaffolds holds great promise for facilitating the regeneration of the injured tendon-to-bone attachment by stimulating the formation of a functionally graded interface.


Assuntos
Osteogênese , Alicerces Teciduais , Biomimética , Durapatita , Poliésteres , Engenharia Tecidual/métodos
20.
Foodborne Pathog Dis ; 18(11): 812-821, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34591654

RESUMO

Foodborne illness is a continuing public health problem in the United States. Seven pathogens-Campylobacter, Clostridium perfringens, Shiga toxin-producing Escherichia coli O157, Listeria monocytogenes, nontyphoidal Salmonella, norovirus, and Toxoplasma gondii-are estimated to cause >90% of the foodborne illnesses, hospitalizations, and deaths attributed to 31 known pathogens. The purpose of this article was to inform estimates of the cost of hospitalizations associated with these pathogens using National Inpatient Survey data from January 2012 through September 2015. The article explored two methodological issues. First, is it more appropriate to use hospitalizations identified using principal or all diagnosis codes when estimating cost? Second, should pathogen-specific or overall mean cost estimates be used? After excluding C. perfringens because of low sample size, the remaining six pathogens included in the analysis were associated with 17,102 hospital discharge records. Of these 55% have the pathogen listed as a principal diagnosis (FBP-PD), ranging from 6% for T. gondii to 68% for nontyphoidal Salmonella. The mean per-case cost of records with the pathogen listed as a secondary diagnosis (FBP-SD) was 2.7 times higher than FBP-PD. FBP-SD were also more severe than FBP-PD with longer lengths of stay, increasing loss of function, and increasing risk of mortality. Severity was the main driver of cost. We also found severity of illness and cost of hospitalizations vary by pathogen. Based on identifying cases with a pathogen in either FBP-PD or FBP-SD, we found mean per-case hospitalization cost across the six pathogens included in this study was $17,515, ranging from $11,552 for Campylobacter to $34,206 for norovirus. In summary, if only FBP-PD cases were used to estimate cost, estimates would likely underestimate hospitalization costs among those cases with a pathogen-specific diagnosis. Because these foodborne pathogens varied in severity of illness, the mean cost of hospitalizations also varied significantly by pathogen.


Assuntos
Microbiologia de Alimentos , Doenças Transmitidas por Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Hospitalização , Humanos , Classificação Internacional de Doenças , Vigilância da População , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...