Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Clin Cosmet Investig Dermatol ; 17: 125-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259431

RESUMO

Background: Skin cooling during laser or radiofrequency (RF) treatments is a method to minimize thermal damage to the epidermis, reduce pain, and decrease post-treatment downtime. We evaluated the effect of parallel contact cooling (PCC) on RF-induced thermal reactions in minipig skin in vivo after bipolar microneedling RF treatment. Methods: RF treatments were administered at frequencies of 0.5, 1, and 2 MHz with single (500 ms), six (1000 ms), and ten (5000 ms) sub-pulse packs to minipig skin with or without PCC. Subsequently, thermometric imaging and histology were used to analyze skin reactions to RF. Results: Thermometric images showed that PCC promptly lowered skin temperature in the RF-treated area, with this effect persisting for over 60s. Regardless of the PCC, RF treatments lasting for 500 ms with a single pulse pack resulted in peri-electrode coagulative necrosis (PECN) zones and inter-electrode non-necrotic thermal reaction (IENT) zones in the dermis. In contrast, treatment lasting 5000 ms with 10 sub-pulse packs produced distinct IENT without notable PECN over a wide dermal area. Skin specimens obtained at 1 h and 3, 7, and 14 days after PCC-assisted RF treatments showed a higher degree of thermal tissue reactions in the deeper dermal regions compared to those after RF treatments without PCC. Conclusion: PCC-assisted RF treatment, utilizing an invasive bipolar microneedling device, enhanced RF-induced skin reactions in the mid to deep dermis while preserving the epidermis and upper papillary dermis from excessive thermal tissue injury.

2.
Nutr Metab (Lond) ; 21(1): 7, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243227

RESUMO

BACKGROUND: Bone is continuously produced by osteoblasts and resorbed by osteoclasts to maintain homeostasis. Impaired bone resorption by osteoclasts causes bone diseases such as osteoporosis and arthritis. Most pharmacological treatment of osteoporosis focuses on inhibiting osteoclast differentiation, often to restore osteoclast/osteoclast balance. However, recent osteoporosis treatments have various side effects. According to a recent study, resveratrol, known as a stilbenoid family, is known to increase bone density, and the osteoclast inhibitory effect was confirmed using oxyresveratrol, a stilbenoid family. Here, we investigated the effect of oxyresveratrol on osteoclast differentiation and an ovariectomized mouse model. METHODS: Mouse leukemia monocyte/macrophage cell line RAW 264.7 was treated with oxyresveratrol, and cell cytotoxicity was confirmed by measuring MTT assay. Tartrate-resistant acid phosphatase (TRAP), an enzyme marker for osteoclasts, was confirmed by staining. In addition, osteoclast differentiation markers and MAPK-related markers were confirmed at the mRNA level and protein expression. The effect of oxyresveratrol was confirmed using ovariectomized mice. Deoxypyridinoline (DPD) was measured using mouse urine and TRAP activity was observed using serum. Bone mineral density was also measured using Micro-CT. RESULTS: The polyphenol oxyresveratrol inhibited receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells. Furthermore, oxyresveratrol inhibited TRAP activity and actin-ring formation. Moreover, oxyresveratrol suppressed the phosphorylation of the RANKL-induced mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK and significantly reduced the expression of bone differentiation markers (NFATc1, cathepsin K, and TRAP). CONCLUSION: Oxyresveratrol inhibits osteoclast differentiation via MAPK and increases bone density in ovariectomized rats, suggesting it has therapeutic potential for bone diseases such as osteoporosis. We confirmed the osteoporosis prevention effect of OR in Raw 264.7 cells, and future studies should confirm the effect of OR using rat bone marrow-derived cells.

3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139223

RESUMO

Age-related macular degeneration (AMD) is a global health challenge. AMD causes visual impairment and blindness, particularly in older individuals. This multifaceted disease progresses through various stages, from asymptomatic dry to advanced wet AMD, driven by various factors including inflammation and oxidative stress. Current treatments are effective mainly for wet AMD; the therapeutic options for dry AMD are limited. Photobiomodulation (PBM) using low-energy light in the red-to-near-infrared range is a promising treatment for retinal diseases. This study investigated the effects of multi-wavelength PBM (680, 780, and 830 nm) on sodium iodate-induced oxidatively damaged retinal tissue. In an in vivo rat model of AMD induced by sodium iodate, multi-wavelength PBM effectively protected the retinal layers, reduced retinal apoptosis, and prevented rod bipolar cell depletion. Furthermore, PBM inhibited photoreceptor degeneration and reduced retinal pigment epithelium toxicity. These results suggest that multi-wavelength PBM may be a useful therapeutic strategy for AMD, mitigating oxidative stress, preserving retinal integrity, and preventing apoptosis.


Assuntos
Terapia com Luz de Baixa Intensidade , Degeneração Macular Exsudativa , Animais , Ratos , Iodatos/toxicidade , Retina
4.
Front Oncol ; 13: 1252014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909014

RESUMO

Radiation treatment is one of the most frequently used therapies in patients with cancer, employed in approximately half of all patients. However, the use of radiation therapy is limited by acute or chronic adverse effects and the failure to consider the tumor microenvironment. Blood vessels substantially contribute to radiation responses in both normal and tumor tissues. The present study employed a three-dimensional (3D) microvasculature-on-a-chip that mimics physiological blood vessels to determine the effect of radiation on blood vessels. This model represents radiation-induced pathophysiological effects on blood vessels in terms of cellular damage and structural and functional changes. DNA double-strand breaks (DSBs), apoptosis, and cell viability indicate cellular damage. Radiation-induced damage leads to a reduction in vascular structures, such as vascular area, branch length, branch number, junction number, and branch diameter; this phenomenon occurs in the mature vascular network and during neovascularization. Additionally, vasculature regression was demonstrated by staining the basement membrane and microfilaments. Radiation exposure could increase the blockage and permeability of the vascular network, indicating that radiation alters the function of blood vessels. Radiation suppressed blood vessel recovery and induced a loss of angiogenic ability, resulting in a network of irradiated vessels that failed to recover, deteriorating gradually. These findings demonstrate that this model is valuable for assessing radiation-induced vascular dysfunction and acute and chronic effects and can potentially improve radiotherapy efficiency.

5.
Clin Cosmet Investig Dermatol ; 16: 1559-1567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351065

RESUMO

Background: Various laser- and light-based devices have been introduced as complementary or alternative treatment modalities for dermatophytosis, particularly for finger or toenail onychomycosis. Objective: This study aimed to comparatively evaluate the antifungal effects of 405-nm and 635-nm dual-band diode lasers using an in vivo guinea pig model of dermatophytosis. Materials and Methods: A guinea pig model was developed by the repetitive application of fungal spore preparations to the back skin of guinea pigs. Dual-diode laser treatment was delivered to the guinea pig skin at a power of 24 mW at a wavelength of 405 nm and 18 mW at 635 nm for 12 min. The treatments were administered three times weekly for 2 weeks, and a mycological study was performed. Results: Mycological studies using scraped samples obtained from treatment groups A (N = 8) and B (N = 8) after dual-diode laser treatment revealed that seven of eight (87.5%) samples in each group had negative results for direct potassium hydroxide microscopy and fungal culture studies. Skin specimens from each infected laser-untreated guinea pig exhibited spongiotic psoriasiform epidermis with parakeratosis. Meanwhile, skin specimens from infected laser-treated guinea pigs in groups A and B demonstrated thinner epidermal thickness than those from infected untreated controls but thicker than those from uninfected treated controls without noticeable inflammatory cell infiltration in the dermis. Conclusion: The guinea pig dermatophytosis model can be used to comparatively evaluate the efficacy and safety of various treatment modalities, including dual-diode lasers, for superficial fungal skin infection.

6.
Adv Sci (Weinh) ; 10(16): e2301037, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37026619

RESUMO

In vivo, the membrane potential of the excitable cell working by ion gradients plays a significant role in bioelectricity generation and nervous system operation. Conventional bioinspired power systems generally have adopted ion gradients, but overlook the functions of ion channels and Donnan effect to generate efficient ion flow in the cell. Here, cell-inspired ionic power device implementing the Donnan effect using multi-ions and monovalent ion exchange membranes as artificial ion channels is realized. Different ion-rich electrolytes on either side of the selective membrane generate the ion gradient potentials with high ionic currents and reduce the osmotic imbalance of the membrane. Based on this device, the artificial neuronal signaling is presented by the mechanical switching system of the ion selectivity like mechanosensitive ion channels in a sensory neuron. Compared with reverse electrodialysis, which requires a low concentration, a high-power device with ten times the current and 8.5 times the power density is fabricated. This device activates grown muscle cells by increasing power through serial connection like an electric eel, and shows the possibility of an ion-based artificial nervous system.


Assuntos
Canais Iônicos , Potenciais de Ação , Canais Iônicos/metabolismo , Íons/metabolismo
7.
Sci Rep ; 13(1): 6220, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069238

RESUMO

Photobiomodulation (PBM) is a therapeutic tool that uses red or near-infrared light in medical applications. It's applications in both central (CNS) and peripheral nervous system (PNS) are widely studied. Among glial cells, astrocytes are known to be activated in injured or damaged brains. Astrocytic cell migration is crucial for maintaining homeostasis in the brain. Our previous study showed that PBM led to astrocyte proliferation and differentiation, but the effects on migration has not been investigated. The aim of this study was to evaluate the effect of PBM on astrocyte migration, drebrin (DBN) expression and cytoplasmic morphology using primary cultured rat astrocyte. We applied a 660-nm light-emitting diode (LED) with fluence of 6, 12 and 18 J/cm2. PBM effects on astrocyte migration were analyzed by two different migration assays (scratch assay and transwell assay). We used immunofluorescence microscopy for visualizing DBN and glial-fibrillary acidic protein (GFAP) and analysis of DBN expression and astrocyte cytoplasmic morphology. Both scratch assay and transwell assay showed significant difference in astrocyte migration following PBM irradiation. With these specific fluence conditions, differences in DBN expression and cell morphology were revealed. PBM could increase the astrocyte migration by altering the cell morphology and DBN expression pattern.


Assuntos
Astrócitos , Encéfalo , Ratos , Animais , Astrócitos/metabolismo , Proliferação de Células , Movimento Celular
8.
Nat Commun ; 14(1): 1488, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932093

RESUMO

Reconstruction of skin equivalents with physiologically relevant cellular and matrix architecture is indispensable for basic research and industrial applications. As skin-nerve crosstalk is increasingly recognized as a major element of skin physiological pathology, the development of reliable in vitro models to evaluate the selective communication between epidermal keratinocytes and sensory neurons is being demanded. In this study, we present a three-dimensional innervated epidermal keratinocyte layer as a sensory neuron-epidermal keratinocyte co-culture model on a microfluidic chip using the slope-based air-liquid interfacing culture and spatial compartmentalization. Our co-culture model recapitulates a more organized basal-suprabasal stratification, enhanced barrier function, and physiologically relevant anatomical innervation and demonstrated the feasibility of in situ imaging and functional analysis in a cell-type-specific manner, thereby improving the structural and functional limitations of previous coculture models. This system has the potential as an improved surrogate model and platform for biomedical and pharmaceutical research.


Assuntos
Epiderme , Microfluídica , Técnicas de Cocultura , Epiderme/inervação , Queratinócitos , Pele , Células Receptoras Sensoriais , Células Cultivadas
9.
Cell Biosci ; 13(1): 8, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635704

RESUMO

BACKGROUND: Temporal lobe epilepsy (TLE) remains one of the most drug-resistant focal epilepsies. Glutamate excitotoxicity and neuroinflammation which leads to loss of synaptic proteins and neuronal death appear to represent a pathogen that characterizes the neurobiology of TLE. Photobiomodulation (PBM) is a rapidly growing therapy for the attenuation of neuronal degeneration harboring non-invasiveness benefits. However, the detailed effects of PBM on excitotoxicity or neuroinflammation remain unclear. We investigated whether tPBM exerts neuroprotective effects on hippocampal neurons in epilepsy mouse model by regulating synapse and synapse-related genes. METHODS: In an in vitro study, we performed imaging analysis and western blot in primary hippocampal neurons from embryonic (E17) rat pups. In an in vivo study, RNA sequencing was performed to identify the gene regulatory by PBM. Histological stain and immunohistochemistry analyses were used to assess synaptic connections, neuroinflammation and neuronal survival. Behavioral tests were used to evaluate the effects of PBM on cognitive functions. RESULTS: PBM was upregulated synaptic connections in an in vitro. In addition, it was confirmed that transcranial PBM reduced synaptic degeneration, neuronal apoptosis, and neuroinflammation in an in vivo. These effects of PBM were supported by RNA sequencing results showing the relation of PBM with gene regulatory networks of neuronal functions. Specifically, Nlgn3 showed increase after PBM and silencing the Nlgn3 reversed the positive effect of PBM in in vitro. Lastly, behavioral alterations including hypoactivity, anxiety and impaired memory were recovered along with the reduction of seizure score in PBM-treated mice. CONCLUSIONS: Our findings demonstrate that PBM attenuates epileptic excitotoxicity, neurodegeneration and cognitive decline induced by TLE through inhibition of the Nlgn3 gene decrease induced by excitotoxicity.

10.
Lab Chip ; 23(3): 475-484, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36688448

RESUMO

Angiogenesis, the formation of new blood vessels from existing vessels, has been associated with more than 70 diseases. Although numerous studies have established angiogenesis models, only a few indicators can be used to analyze angiogenic structures. In the present study, we developed an image-processing pipeline based on deep learning to analyze and quantify angiogenesis. We utilized several image-processing algorithms to quantify angiogenesis, including a deep learning-based cell nuclear segmentation algorithm and image skeletonization. This method could quantify and measure changes in blood vessels in response to biochemical gradients using 16 indicators, including length, width, number, and nuclear distribution. Moreover, this procedure is highly efficient for the three-dimensional quantitative analysis of angiogenesis and can be applied to diverse angiogenesis investigations.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Dispositivos Lab-On-A-Chip
11.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555737

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication and interaction disorders, as well as repetitive and restrictive behaviors. To date, no effective treatment strategies have been identified. However, photobiomodulation (PBM) is emerging as a promising treatment for neurological and neuropsychiatric disorders. We used mice exposed to valproic acid (VPA) as a model of ASD and found that pathological behavioral and histological changes that may have been induced by VPA were attenuated by PBM treatment. Pregnant mice that had been exposed to VPA were treated with PBM three times. Thereafter, we evaluated the offspring for developmental disorders, motor function, hyperactivity, repetitive behaviors, and cognitive impairment. PBM attenuated many of the pathological behaviors observed in the VPA-induced ASD mouse model. In addition, pathophysiological analyses confirmed that the increase in activated microglia and astrocytes observed in the VPA-induced ASD mouse model was attenuated by PBM treatment. This suggests that PBM can counteract the behavioral changes caused by neuroinflammation in ASD. Therefore, our data show that PBM has therapeutic potential and may reduce the prevalence of neurodevelopmental disorders such as ASD.


Assuntos
Transtorno do Espectro Autista , Disfunção Cognitiva , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Camundongos , Animais , Humanos , Ácido Valproico/farmacologia , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Doenças Neuroinflamatórias , Comportamento Social , Comportamento Animal , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
12.
Sci Rep ; 12(1): 15246, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085308

RESUMO

Status epilepticus (SE) refers to a single seizure that lasts longer than typical seizures or a series of consecutive seizures. The hippocampus, which is vulnerable to the effects of SE, has a critical role in memory storage and retrieval. The trisynaptic loop in the hippocampus connects the substructures thereof, namely the dentate gyrus (DG), CA3, and CA1. In an animal model of SE, abnormal neurogenesis in the DG and aberrant neural network formation result in sequential neural degeneration in CA3 and CA1. Photobiomodulation (PBM) therapy, previously known as low-level laser (light) therapy (LLLT), is a novel therapy for the treatment of various neurological disorders including SE. However, the effects of this novel therapeutic approach on the recovery process are poorly understood. In the present study, we found that PBM transformed SE-induced abnormal neurogenesis to normal neurogenesis. We demonstrated that PBM plays a key role in normal hippocampal neurogenesis by enhancing the migration of maturing granular cells (early neuronal cells) to the GCL, and that normal neurogenesis induced by PBM prevents SE-induced hippocampal neuronal loss in CA1. Thus, PBM is a novel approach to prevent seizure-induced neuronal degeneration, for which light devices may be developed in the future.


Assuntos
Neurogênese , Estado Epiléptico , Animais , Modelos Animais de Doenças , Hipocampo , Convulsões/radioterapia , Estado Epiléptico/radioterapia
13.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35898101

RESUMO

We developed a single-camera-based near-infrared (NIR) fluorescence imaging device using indocyanine green (ICG) NIR fluorescence contrast agents for image-induced surgery. In general, a fluorescent imaging system that simultaneously provides color and NIR images uses two cameras, which is disadvantageous because it increases the imaging head of the system. Recently, a single-camera-based NIR optical imaging device with quantum efficiency partially extended to the NIR region was developed to overcome this drawback. The system used RGB_NIR filters for camera sensors to provide color and NIR images simultaneously; however, the sensitivity and resolution of the infrared images are reduced by 1/4, and the exposure time and gain cannot be set individually when acquiring color and NIR images. Thus, to overcome these shortcomings, this study developed a compact fluorescent imaging system that uses a single camera with two complementary metal-oxide semiconductor (CMOS) image sensors. Sensitivity and signal-to-background ratio were measured according to the concentrations of ICG solution, exposure time, and camera gain to evaluate the performance of the imaging system. Consequently, the clinical applicability of the system was confirmed through the toxicity analysis of the light source and in vivo testing.


Assuntos
Verde de Indocianina , Imagem Óptica , Fluorescência , Corantes Fluorescentes , Imagem Óptica/métodos , Óxidos , Semicondutores
14.
J Cosmet Laser Ther ; 24(1-5): 40-47, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35895869

RESUMO

Long-pulsed neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers have recently been used for the treatment of vascular lesions refractory to conventional vascular lasers. The aim of this study was to evaluate the clinical efficacy and safety of long-pulsed Nd:YAG laser treatment for vascular disorders. Laser irradiation was performed using two approaches: the 532 nm Nd:YAG laser was used to irradiate the dorsal skin fold in mice and the 1064 nm Nd:YAG laser was used to irradiate the leg of mice without skin incision. The specimens were observed immediately after laser treatment using a laser Doppler perfusion imaging system. Red blood cell (RBC) extravasation and hemorrhage were observed using the hematoxylin and eosin stain. The diameter of blood vessel under 30 µm was disrupted with a laser pulse at a fluence of 12 J/cm2 and a wavelength of 532 nm regardless of pulse duration. The veins and arteries of approximately 1 mm in size were ablated with laser pulses at a fluence of 140 J/cm2 and above and a wavelength of 1064 nm. Selective photopyrolysis can be achieved with either 532- or 1064 nm Nd:YAG laser pulses in vascular diseases based on the depth and size of the vessel.


Assuntos
Lasers de Estado Sólido , Camundongos , Animais , Lasers de Estado Sólido/efeitos adversos , Procedimentos Cirúrgicos Dermatológicos , Neodímio , Resultado do Tratamento
15.
Sci Rep ; 12(1): 11449, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794197

RESUMO

The protozoan parasite Toxoplasma gondii (T. gondii) causes one of the most common human zoonotic diseases and infects approximately one-third of the global population. T. gondii infects nearly every cell type and causes severe symptoms in susceptible populations. In previous laboratory animal studies, T. gondii movement and transmission were not analyzed in real time. In a three-dimensional (3D) microfluidic assay, we successfully supported the complex lytic cycle of T. gondii in situ by generating a stable microvasculature. The physiology of the T. gondii-infected microvasculature was monitored in order to investigate the growth, paracellular and transcellular migration, and transmission of T. gondii, as well as the efficacy of T. gondii drugs.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Microfluídica , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Migração Transendotelial e Transepitelial , Zoonoses
16.
Biomed Res Int ; 2022: 4400276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252445

RESUMO

The popularity of light/energy devices for cosmetic purposes (e.g., skin care) is increasing. However, the effects and underlying mechanisms remain poorly understood. Commencing in the 1960s, various studies have evaluated the beneficial effects of a light source on cells and tissues. The techniques evaluated include low-level light (laser) therapy and photobiomodulation (PBM). Most studies on PBM used red light sources, but, recently, many studies have employed near-infrared light sources including those of wavelength 800 nm. Here, we used a light-emitting diode (LED) array with a wavelength of 863 nm to treat DMBA/TPA-induced mouse skin tumors; treatment with the array delayed tumor development and reduced the levels of systemic inflammatory cytokines. These results suggest that light therapy could be beneficial. However, the effects were small. Further studies on different skin tumors using an optimized LED setup are required. Combination therapies (conventional methods and an LED array) may be useful.


Assuntos
Terapia com Luz de Baixa Intensidade , Neoplasias Cutâneas , Animais , Citocinas , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade/métodos , Camundongos , Camundongos Endogâmicos ICR , Neoplasias Cutâneas/induzido quimicamente
17.
Life (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36676024

RESUMO

Taste bud cell differentiation is extremely important for taste sensation. Immature taste bud cells cannot function during taste perception transmission to the nerve. In this study, we investigated whether hedgehog signaling affected taste bud cell differentiation and whether transient receptor potential vanilloid 1 (TRPV1) played a key role in dry mouth. The induction of dry mouth due to salivary gland resection (SGR) was confirmed on the basis of reduced salivation and disrupted fungiform papillae. The expression of keratin 8 (K8) of taste bud cells, neurofilament (NF), sonic hedgehog (Shh), and glioma-associated oncogene homolog 1 (Gli1) around taste bud cells was downregulated; however, the expression of TRPV1, P2X purinoceptor 3 (P2X3), and hematopoietic stem cell factor (c-Kit) was upregulated at the NF ends in the dry mouth group. To investigate the effect of TRPV1 defect on dry mouth, we induced dry mouth in the TRPV-/- group. The K8, NF, and P2X3 expression patterns were the same in the TRPV1 wild-type and TRPV1-/- dry mouth groups. However, Shh and c-Kit expression decreased regardless of dry mouth in the case of TRPV1 deficiency. These results indicated that TRPV1 positively regulated proliferation during taste bud cell injury by blocking the Shh/Gli1 pathway. In addition, not only cell proliferation but also differentiation of taste bud cells could not be regulated under TRPV1-deficiency conditions. Thus, TRPV1 positively regulates taste bud cell innervation and differentiation; this finding could be valuable in the clinical treatment of dry mouth-related taste dysfunction.

18.
Biomed Opt Express ; 12(9): 5583-5596, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34692202

RESUMO

Photobiomodulation (PBM) is attracting increased attention in the fields of dermatology and cosmetics. PBM with a variety of light parameters has been used widely in skin care, but can cause certain types of unwanted cells to proliferate in the skin; this can lead to skin tumors, such as papillomas and cancers. We constructed a mouse model of human skin tumors using DMBA as an initiator and TPA as a promoter, and confirmed that LEDs with a wavelength of 642 nm (red light) increased tumor size, epidermal thickness, and systemic proinflammatory cytokine levels. These results indicated that skin tumor cell proliferation may result from the use of 642 nm LEDs, suggesting the need for regulation of skin care based on LED light therapy.

19.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359834

RESUMO

Astrocytes act as neural stem cells (NSCs) that have the potential to self-renew and differentiate into other neuronal cells. The protein expression of these astrocytes depends on the stage of differentiation, showing sequential expression of multiple proteins such as octamer-binding transcription factor 4 (Oct4), nestin, glial fibrillary acidic protein (GFAP), and aldehyde dehydrogenase 1 family member L1 (aldh1L1). Photobiomodulation (PBM) affects cell apoptosis, proliferation, migration, and adhesion. We hypothesized that astrocyte proliferation and differentiation would be modulated by PBM. We used an optimized astrocyte culture method and a 660-nanometer light-emitting diode (LED) to enhance the biological actions of many kinds of cells. We determined that the 660-nanometer LED promoted the biological actions of cultured astrocytes by increasing the reactive oxygen species levels. The overall viability of the cultured cells, which included various cells other than astrocytes, did not change after LED exposure; however, astrocyte-specific proliferation was observed by the increased co-expression of GFAP and bromodeoxyuridine (BrdU)/Ki67. Furthermore, the 660-nanometer LED provides evidence of differentiation, as shown by the decreased Oct4 and GFAP co-expression and increased nestin and aldh1L1 expression. These results demonstrate that a 660-nanometer LED can modify astrocyte proliferation, which suggests the efficacy of the therapeutic application of LED in various pathological states of the central nervous system.


Assuntos
Astrócitos/efeitos da radiação , Proliferação de Células/efeitos da radiação , Expressão Gênica/efeitos da radiação , Neurônios/efeitos da radiação , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Adesão Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Movimento Celular/efeitos da radiação , Técnicas de Cocultura , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Lasers Semicondutores , Luz , Nestina/genética , Nestina/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
20.
Photobiomodul Photomed Laser Surg ; 39(4): 254-264, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33844607

RESUMO

Objective: This study aimed to investigate whether photobiomodulation (PBM) restores normal thyroid follicular cells affected by ionizing radiation, and to determine the mechanism of PBM on thyroid function. Background: Despite diverse applications of PBM to medical therapy, there has been no evidence of its involvement with thyroid function. Methods: A light emission diode (850 nm) array was used at 2, 5, and 10 J/cm2 for in vitro analysis in human thyroid N-Thy-3.1 cells, and at 120 J/cm2 for in vivo analysis in C58BL6 mice. Cell survival and proliferation were evaluated through clonogenic and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] assays. Cell cycle was measured using flow cytometry. Cell cycle markers, such as p53, retinoblastoma (Rb), and E2F1, were investigated by western blot analysis. In vitro levels of cyclic adenosine monophosphate (cAMP) and thyroglobulin (TG) and in vivo levels of cAMP, TG, thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) were measured using enzyme-linked immunosorbent assay. Results: A lethal dose for N-Thy-3.1 cells was 6 Gy. PBM at 2 J/cm2 was the most effective for causing cell cycle arrest by ionizing radiation. PBM regulated p53, Rb, and cAMP expression levels in vitro. PBM restored proliferation by regulating Rb and p53 in ionizing radiated thyroid follicular tissues. PBM also recovered cAMP, TG, and thyroid function marker expression (TSH, T3, and T4) by ionizing radiation in vivo. Conclusions: PBM restored ionizing radiation-induced thyroid follicular cell dysfunction by increasing cAMP proliferation and expression. PBM is effective for ionizing radiation-induced hypothyroidism by complementing cell proliferation and cAMP, presenting a novel method for clinical application.


Assuntos
Neoplasias da Retina , Retinoblastoma , Animais , Sobrevivência Celular , Camundongos , Retinoblastoma/radioterapia , Glândula Tireoide , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...