Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Biomech ; 169: 112138, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38728788

RESUMO

The shoe sole is identified as a fall risk factor since it may impede the afferent information about the outside world collected by the plantar sensory units. However, no study has directly quantified how the shoe sole compromises body balance and increases fall risk. This study aimed to inspect how the sole affects human balance after an unexpected standing-slip. It was hypothesized that individuals wearing the sole, relative to their barefoot counterparts, would exhibit 1) more impaired stability and 2) disrupted lower limb muscle activation following a standing-slip. Twenty young adults were evenly randomized into two groups: soled and barefoot. The soled group wore a pair of customized 10-mm thick soles, while the other group was bare-footed. Full-body kinematics and leg muscle electromyography (EMG) were collected during a standardized and unexpected standing-slip. The EMG electrodes were placed on the tibialis anterior, gastrocnemius, rectus femoris, and biceps femoris bilaterally. Dynamic stability, spatiotemporal gait parameters, and the EMG latency of the leg muscles were compared between groups. The sole impeded the initiation of the recovery step possibly because it interfered with the accurate detection of the external perturbation and subsequently activated the leg muscles later in the soled group than in the barefoot group. As a result, individuals in the soled group experienced a longer slip distance and were more unstable than the barefoot group at the recovery foot liftoff. The findings of this study could augment our understanding of how the shoe sole impairs body balance and increases the fall risk.

2.
Phytomedicine ; 129: 155695, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728922

RESUMO

BACKGROUND: Exercise is an effective strategy to prevent sarcopenia, but high physical inactivity in the elderly requires alternative therapeutic approaches. Exercise mimetics are therapeutic compounds that simulate the beneficial effects of exercise on skeletal muscles. However, the toxicity and adverse effects of exercise mimetics raise serious concerns. PURPOSE: We aimed to search novel plant-based alternatives to activate exercise induced-signaling. METHODS: We used open databases and luciferase assays to identify plant-derived alternatives to activate exercise-induced signaling and compared its efficacy to mild intensity continuous training (MICT) in aged C57BL/6 mice. The nineteen-month-old mice were either fed an experimental diet supplemented with the isolated alternative or subjected to MICT for up to 21 mo of age. RESULTS: Our analysis revealed that Chrysanthemum zawadskii Herbich var latillobum (Maxim.) Kitamura (CZH), a medicinal plant rich in linarin, is a novel activator of peroxisome proliferator-activated receptor δ (PPARδ) and estrogen-related receptor γ (ERRγ), key regulators of exercise-induced positive effects on muscles. CZH supplementation ameliorated the loss of muscle function and mass, and increased PPARδ and ERRγ expression in mouse muscles. CZH also improved mitochondrial functions and proteostasis in aged mice, similar to MICT. Furthermore, CZH and linarin induced the activation of Sestrin 1, a key mediator of exercise benefits, in muscle. Silencing Sestrin 1 negated the increase in myogenesis and mitochondrial respiration by CZH and linarin in primary myoblasts from old mice. CONCLUSION: Our findings suggest the potential of CZH as a novel plant-derived alternative to activate exercise-induced signaling for preventing sarcopenia in sedentary older adults. This could offer a safer therapeutic option for sarcopenia treatment.

3.
J Biomech ; 168: 112123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696984

RESUMO

Motorized treadmills have been extensively used in investigating reactive balance control and developing perturbation-based interventions for fall prevention. However, the relationship between perturbation intensity and its outcome has not been quantified. The primary purpose of this study was to quantitatively analyze how the treadmill belt's peak velocity affects the perturbation outcome and other metrics related to the reactive balance in young adults while the total belt displacement is controlled at 0.36 m. Thirty-one healthy young adults were randomly assigned into three groups with different peak belt speeds: low (0.9 m/s), medium (1.2 m/s), and high (1.8 m/s). Protected by a safety harness, participants were exposed to a forward support surface translation while standing at an unexpected timing on an ActiveStep treadmill. The primary (perturbation outcome: fall vs. recovery) and secondary (dynamic stability, hip descent, belt distance at liftoff, and recovery step latency) outcome measures were compared among groups. Results revealed that a higher perturbation intensity is correlated with a greater faller rate (p < 0.001). Compared to the low- and medium-intensity groups, the high-intensity group was less stable (p < 0.001) with a larger hip descent (p < 0.001) and a longer belt distance (p < 0.001) at the recovery step liftoff. The results suggest that the increased perturbation intensity raises the risk of falling with larger instability and poorer reactive performance after a support surface translation-induced perturbation in healthy young adults. The findings could furnish preliminary guidance for us to design and select the optimal perturbation intensity that can maximize the effects of perturbation-based training protocols.


Assuntos
Acidentes por Quedas , Equilíbrio Postural , Humanos , Equilíbrio Postural/fisiologia , Acidentes por Quedas/prevenção & controle , Masculino , Feminino , Adulto , Adulto Jovem , Posição Ortostática , Fenômenos Biomecânicos , Teste de Esforço/métodos
4.
Phytomedicine ; 128: 155449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518644

RESUMO

BACKGROUND: Peucedanum japonicum Thunb. (PJ) is a vegetable widely consumed in East Asia and is known to have anticancer and anti-inflammatory effects. However, the effect of PJ on muscle atrophy remains elusive. PURPOSE: This study aimed to investigate the effect of PJ and its active compound on dexamethasone (DEX)-induced muscle atrophy. METHODS: We performed qualitative and quantitative analysis of PJ using ultra-performance liquid chromatography-mass spectrometry tandem mass spectrometry (UPLC-MS/MS) and high-performance liquid chromatography (HPLC), respectively. The efficacy of PJ and its main compound 4-caffeoylquinic acid (CQA) on muscle atrophy was evaluated in DEX-induced myotube atrophy and DEX-induced muscle atrophy in mouse myoblasts (C2C12) and C57BL/6 mice, in vitro and in vivo, respectively. RESULTS: The UPLC-MS/MS and HPLC data showed that the concentration of 4-CQA in PJ was 18.845 mg/g. PJ and 4-CQA treatments significantly inhibited DEX-induced myotube atrophy by decreasing protein synthesis and glucocorticoid translocation to the nucleus in C2C12 myotubes. In addition, PJ enhanced myogenesis by upregulating myogenin and myogenic differentiation 1 in C2C12 cells. PJ supplementation effectively increased muscle function and mass, downregulated atrogenes, and decreased proteasome activity in C57BL/6 mice. Additionally, PJ effectively decreased the nuclear translocation of forkhead transcription factor 3 alpha by inhibiting glucocorticoid receptor. CONCLUSION: Overall, PJ and its active compound 4-CQA alleviated skeletal muscle atrophy by inhibiting protein degradation. Hence, our findings present PJ as a potential novel pharmaceutical candidate for the treatment of muscle atrophy.


Assuntos
Apiaceae , Dexametasona , Camundongos Endogâmicos C57BL , Atrofia Muscular , Extratos Vegetais , Ácido Quínico/análogos & derivados , Animais , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Dexametasona/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apiaceae/química , Masculino , Linhagem Celular , Espectrometria de Massas em Tandem , Fibras Musculares Esqueléticas/efeitos dos fármacos , Ácido Quínico/farmacologia , Cromatografia Líquida de Alta Pressão , Miogenina/metabolismo
5.
Obes Res Clin Pract ; 18(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38360492

RESUMO

This review sought to meta-analyze previous research observing the effects of fat mass distribution on the fall risk among people with obesity. The literature search yielded five qualified studies enrolling 1218 participants (650 with android vs. 568 with gynoid). The outcome variables included the annual fall prevalence (primary outcome) and the center of pressure (COP) movement measurements during a posturography test (secondary) among people with android or gynoid obesity. Meta-analyses were conducted using the inverse variance weighted random-effects model. The odds ratio (OR) and standardized mean difference (SMD) were used as the effect size for the primary and secondary variables, respectively. The results revealed that more people with android obesity fall annually than their gynoid obesity counterparts (OR = 1.78 [1.34, 2.37], p < 0.0001). People with android obesity also exhibited significantly faster overall COP velocity (SMD = 0.49 [0.11, 0.88], p = 0.01) during standing compared to individuals with gynoid obesity. Our results indicated that people with android obesity could have a greater fall risk than those with gynoid obesity. Given the limited number of studies included, more well-designed and quality work is desired to further clarify how fat mass distribution alters the fall risk among people with obesity. A standardized approach to quantify the fat mass distribution (android vs. gynoid) is imperatively needed for people with obesity.


Assuntos
Acidentes por Quedas , Adiposidade , Obesidade , Humanos , Tecido Adiposo , Obesidade/complicações , Razão de Chances
6.
J Biomech ; 164: 111962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306779

RESUMO

It is well recognized that overall obesity increases fall risk. However, it remains unknown if the obesity-induced increase in the fall risk depends upon the adipose distribution (or obesity type: android vs. gynoid). This pilot study examined the effects of fat deposition region on fall risk following a standing-slip trial in young adults with simulated android or gynoid adiposity. Appropriate external weights were attached to two groups of healthy young lean adults at either the abdomen or upper thigh region to simulate android or gynoid adiposity, respectively, with a targeted body mass index of 32 kg/m2. Under the protection of a safety harness, both groups were exposed to an identical standing-slip on a treadmill with a maximum slip distance of 0.36 m. The primary (dynamic gait stability) and secondary (latency, length, duration, and speed of the recovery step, slip distance, and trunk velocity) outcome variables on the slip trial were compared between groups. The results revealed that the android group was more unstable with a longer slip distance and a slower trunk flexion velocity than the gynoid group at the recovery foot liftoff after the slip onset. The android group initiated the recovery step later but executed the step faster than the gynoid group. Biomechanically, the android adipose tissue may be associated with a higher fall risk than the gynoid fat tissue. Our findings could provide preliminary evidence for considering fat distribution as an additional fall risk factor to identify older adults with obesity at a high fall risk.


Assuntos
Tecido Adiposo , Obesidade , Adulto Jovem , Humanos , Idoso , Projetos Piloto , Absorciometria de Fóton/métodos , Fatores de Risco
7.
J Microbiol Biotechnol ; 34(3): 495-505, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247215

RESUMO

Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 µM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.


Assuntos
Lithospermum , Camundongos , Animais , Biogênese de Organelas , Camundongos Obesos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Ácido Palmítico , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos
8.
Chin Med ; 19(1): 20, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287373

RESUMO

BACKGROUND: Muscle atrophy is characterized by decreased muscle mass, function, and strength. Synthetic glucocorticoids, including dexamethasone (Dexa), are commonly used to treat autoimmune diseases. However, prolonged exposure of Dexa with high dose exerts severe side effects, including muscle atrophy. The purpose of this study was to investigate whether Gromwell root extract (GW) can prevent Dexa-induced muscle atrophy in C2C12 cells and mice and to characterize the composition of GW to identify bioactive compounds. METHODS: For in vitro experiments, GW (0.5 and 1 µg/mL) or lithospermic acid (LA, 5 and 10 µM) was added to C2C12 myotubes on day 4 of differentiation and incubated for 24 h, along with 50 µM Dexa. For in vivo experiment, four-week-old male C57BL/6 mice were randomly divided into the four following groups (n = 7/group): Con group, Dexa group, GW0.1 group, and GW0.2 group. Mice were fed experimental diets of AIN-93 M with or without 0.1 or 0.2% GW for 4 weeks. Subsequently, muscle atrophy was induced by administering an intraperitoneal injection of Dexa at a dose of 15 mg/kg/day for 38 days, in conjunction with dietary intake. RESULTS: In Dexa-induced myotube atrophy, treatment with GW increased myotube diameter, reduced the expression of muscle atrophy markers, and enhanced the expression of myosin heavy chain (MHC) isoforms in C2C12 cells. Supplementation with the GW improved muscle function and performance in mice with Dexa-induced muscle atrophy, evidenced in the grip strength and running tests. The GW group showed increased lean body mass, skeletal muscle mass, size, and myosin heavy chain isoform expression, along with reduced skeletal muscle atrophy markers in Dexa-injected mice. Supplementation with GW increased protein synthesis and decreased protein degradation through the Akt/mammalian target of rapamycin and glucocorticoid receptor/forkhead box O3 signaling pathways, respectively. We identified LA as a potential bioactive component of the GW. LA treatment increased myotube diameter and decreased the expression of muscle atrophy markers in Dexa-induced C2C12 cells. CONCLUSIONS: These findings underscore the potential of the GW in preventing Dexa-induced skeletal muscle atrophy and highlight the contribution of LA to its effects.

9.
J Nutr Biochem ; 125: 109532, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977405

RESUMO

Fuzhuan brick tea (FBT) is a post-fermented tea fermented by the fungus Eurotium cristatum and is mainly produced in Hunan Province, China. Our previous study revealed that FBT extract prevents obesity by increasing energy expenditure and mitochondrial content in mice. Therefore, in this study, we hypothesized that FBT extract could be effective in alleviating obesity-induced muscle atrophy by addressing mitochondrial dysfunction, and aimed to explore the underlying molecular mechanism of FBT extract in high-fat diet-induced obese mice. FBT extract increased skeletal muscle weight and size, myosin heavy chain isoforms, and muscle performance in obese mice. Additionally, FBT extract reduced obesity-induced intramuscular lipids, skeletal muscle inflammation, and the expression of skeletal muscle atrophy markers, and increased the expression of fibronectin type III domain-containing protein 5 in skeletal muscles. Obesity-induced skeletal muscle mitochondrial dysfunction was improved by FBT extract as analyzed through mitochondrial morphology, fatty acid oxidation, respiratory chain complexes, and mitochondrial dynamics and biogenesis. Epigallocatechin, a major bioactive compound in FBT extract, attenuated palmitic acid-induced muscle atrophy by regulating mitochondrial functions in C2C12 cells. In conclusion, FBT extract may prevent obesity-induced muscle atrophy by alleviating mitochondrial dysfunction in mice.


Assuntos
Doenças Mitocondriais , Chá , Camundongos , Animais , Camundongos Obesos , Obesidade/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Músculo Esquelético/metabolismo , Extratos Vegetais/farmacologia
10.
Nutr Rev ; 82(5): 676-694, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37475189

RESUMO

A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.


Assuntos
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Idoso , Sarcopenia/prevenção & controle , Qualidade de Vida , Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Mitocôndrias
11.
J Appl Biomech ; 40(1): 66-72, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890841

RESUMO

Treadmill walking has been used as a surrogate for overground walking to examine how load carriage affects gait. The validity of using treadmill walking to investigate load carriage's effects on stability has not been established. Thirty young adults were randomized into 3 front-loaded groups (group 1: 0%, 2: 10%, or 3: 20% of bodyweight). Participants carried their load during overground and treadmill walking. Dynamic gait stability (primary outcome) was determined for 2 gait events (touchdown and liftoff). Secondary variables included step length, gait speed, and trunk angle. Groups 1 and 2 demonstrated similar stability between walking surfaces. Group 3 was less stable during treadmill walking than overground (P ≤ .005). Besides trunk angle, all secondary outcomes were similar between groups (P > .272) but different between surfaces (P ≤ .001). The trunk angle at both events showed significant group- and surface-related differences (P ≤ .046). Results suggested that walking with an anterior load of up to 10% bodyweight causes comparable stability between surfaces. A 20% bodyweight front load could render participants less stable on the treadmill than overground. This indicates that anteriorly loaded treadmill walking may not be interchangeable with overground walking concerning stability for anterior loads of 20% bodyweight.


Assuntos
Marcha , Caminhada , Humanos , Adulto Jovem , Velocidade de Caminhada , Teste de Esforço/métodos , Fenômenos Biomecânicos
12.
Adv Sci (Weinh) ; 11(10): e2304702, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145969

RESUMO

The DNA damage response is essential for preserving genome integrity and eliminating damaged cells. Although cellular metabolism plays a central role in cell fate decision between proliferation, survival, or death, the metabolic response to DNA damage remains largely obscure. Here, this work shows that DNA damage induces fatty acid oxidation (FAO), which is required for DNA damage-induced cell death. Mechanistically, FAO induction increases cellular acetyl-CoA levels and promotes N-alpha-acetylation of caspase-2, leading to cell death. Whereas chemotherapy increases FAO related genes through peroxisome proliferator-activated receptor α (PPARα), accelerated hypoxia-inducible factor-1α stabilization by tumor cells in obese mice impedes the upregulation of FAO, which contributes to its chemoresistance. Finally, this work finds that improving FAO by PPARα activation ameliorates obesity-driven chemoresistance and enhances the outcomes of chemotherapy in obese mice. These findings reveal the shift toward FAO induction is an important metabolic response to DNA damage and may provide effective therapeutic strategies for cancer patients with obesity.


Assuntos
Ácidos Graxos , PPAR alfa , Camundongos , Animais , Humanos , Oxirredução , Ácidos Graxos/metabolismo , PPAR alfa/metabolismo , Camundongos Obesos , Resistencia a Medicamentos Antineoplásicos , Obesidade/metabolismo , Morte Celular
13.
Phytomedicine ; 123: 155281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103316

RESUMO

BACKGROUND: Geniposide (GP) is an iridoid glycoside that is present in nearly 40 species, including Gardenia jasminoides Ellis. GP has been reported to exhibit neuroprotective effects in various Alzheimer's disease (AD) models; however, the effects of GP on AD models of Caenorhabditis elegans (C. elegans) and aging-accelerated mouse predisposition-8 (SAMP8) mice have not yet been evaluated. PURPOSE: To determine whether GP improves the pathology of AD and sarcopenia. METHODS: AD models of C. elegans and SAMP8 mice were employed and subjected to behavioral analyses. Further, RT-PCR, histological analysis, and western blot analyses were performed to assess the expression of genes and proteins related to AD and muscle atrophy. RESULTS: GP treatment in the AD model of C. elegans significantly restored the observed deterioration in lifespan and motility. In SAMP8 mice, GP did not improve cognitive function deterioration by accelerated aging but ameliorated physical function deterioration. Furthermore, in differentiated C2C12 cells, GP ameliorated muscle atrophy induced by dexamethasone treatment and inhibited FoxO1 activity by activating AKT. CONCLUSION: Although GP did not improve the AD pathology in SAMP8 mice, we suggest that GP has the potential to improve muscle deterioration caused by aging. This effect of GP may be attributed to the suppression of FoxO1 activity.


Assuntos
Doença de Alzheimer , Caenorhabditis elegans , Iridoides , Camundongos , Animais , Doença de Alzheimer/patologia , Envelhecimento , Atrofia Muscular/tratamento farmacológico
14.
Biomed Pharmacother ; 170: 115913, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154270

RESUMO

The plant Justicia procumbens is traditionally used in Asia to treat fever, cough, and pain. Previous studies have reported its anticancer and anti-asthmatic properties. However, its potential for preventing androgenic alopecia (AGA) has not yet been reported. AGA is a widespread hair loss condition primarily caused by male hormones. In this study, we examined the hair loss-preventing effects of an aqueous extract of J. procumbens (JPAE) using human hair follicle dermal papilla cell (HFDPC) and a mouse model of testosterone-induced AGA. JPAE treatment increased HFDPC proliferation by activating the Wnt/ß-catenin signaling pathway. Additionally, JPAE increased the expression of Wnt targets, such as cyclin D1 and VEGF, by promoting the translocation of ß-catenin to the nucleus. Administration of JPAE reduced hair loss, increased hair thickness, and enhanced hair shine in an AGA mouse model. Furthermore, it increased the expression of p-GSK-3ß and ß-catenin in the dorsal skin of the mice. These findings imply that JPAE promotes the proliferation of HFDPC and prevents hair loss in an AGA mouse model. JPAE can therefore be used as a functional food and natural treatment option for AGA to prevent hair loss.


Assuntos
Justicia , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Alopecia/induzido quimicamente , Alopecia/prevenção & controle , Alopecia/metabolismo , Cabelo/metabolismo , Via de Sinalização Wnt
15.
FASEB Bioadv ; 5(12): 521-527, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094156

RESUMO

The beneficial effects of Akkermansia muciniphila (Akk) on gut health and inflammation reduction have been demonstrated; however, scientific evidence of hair growth enhancement by Akk has not been reported. Therefore, this study was undertaken to investigate the effect of Akk on improving testosterone-mediated hair growth inhibition. Hair growth inhibition was induced through subcutaneous injection of testosterone into the shaved dorsal skin of C57BL/6 male mice. Live and pasteurized Akk were orally administered at a concentration of 1 × 108 colony-forming unit. After 5 weeks, hair length and skin tissues were analyzed. The live and pasteurized Akk significantly stimulated hair growth, countering the inhibitory effect of testosterone compared to the testosterone-alone group. Hematoxylin and eosin staining revealed a significant increase in hair follicle size in the Akk-treated group. An increase in ß-catenin levels, which are associated with hair growth and cell cycle progression, was also observed. Moreover, the Akk-treated group exhibited increased levels of fibroblast growth factors, including Fgf7, Igf1, Fgf7, Fgf10, and Fgf21. However, no significant difference was observed between the live and pasteurized Akk groups. These results underscore the potential of live and pasteurized Akk in improving testosterone-mediated hair growth inhibition.

16.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571394

RESUMO

We investigated the effects of 6-gingerol on adiposity and obesity-induced inflammation by focusing on the regulation of adipogenesis and adipokines in white adipose tissue (WAT) of diet-induced obese mice. C57BL/6 mice were fed a high-fat diet (HFD) containing 0.05% 6-gingerol for 8 weeks. 6-Gingerol supplementation significantly reduced body weight, WAT mass, serum triglyceride, leptin and insulin levels, and HOMA-IR in HFD-fed mice. Additionally, the size of adipocytes in epididymal fat pads was reduced in HFD-fed mice by 6-gingerol supplementation. 6-Gingerol reduced the mRNA and protein levels of adipogenesis-related transcription factors, such as SREBP-1, PPARγ, and C/EBPα in WAT. Furthermore, 6-gingerol suppressed the expression of lipogenesis-related genes, such as fatty acid synthase and CD36 in WAT. Adiponectin expression was significantly increased, whereas inflammatory adipokines (leptin, resistin, TNF-α, MCP-1, and PAI-1) and the macrophage marker F4/80 were significantly reduced in the WAT of HFD-fed mice by 6-gingerol supplementation. In conclusion, 6-gingerol effectively contributed to the alleviation of adiposity and inflammation in WAT, which is associated with the regulation of adipokines in diet-induced obese mice.


Assuntos
Dieta Hiperlipídica , Leptina , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Adiposidade , Adipocinas/metabolismo , Camundongos Obesos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/complicações , Tecido Adiposo/metabolismo , Inflamação/metabolismo
17.
BMB Rep ; 56(10): 537-544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482753

RESUMO

The share of the population that is aging is growing rapidly. In an aging society, technologies and interventions that delay the aging process are of great interest. Dietary restriction (DR) is the most reproducible and effective nutritional intervention tested to date for delaying the aging process and prolonging the health span in animal models. Preventive effects of DR on age-related diseases have also been reported in human. In addition, highly conserved signaling pathways from small animal models to human mediate the effects of DR. Recent evidence has shown that the immune system is closely related to the effects of DR, and functions as a major mechanism of DR in healthy aging. This review discusses the effects of DR in delaying aging and preventing age-related diseases in animal, including human, and introduces the molecular mechanisms that mediate these effects. In addition, it reports scientific findings on the relationship between the immune system and DRinduced longevity. The review highlights the role of immunity as a potential mediator of the effects of DR on longevity, and provides insights into healthy aging in human. [BMB Reports 2023; 56(10): 537-544].


Assuntos
Restrição Calórica , Longevidade , Animais , Humanos , Envelhecimento , Transdução de Sinais , Dieta
18.
Front Pharmacol ; 14: 1172084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229245

RESUMO

Alopecia, regardless of gender, exacerbates psychological stress in those affected. The rising prevalence of alopecia has fueled a research interest in preventing hair loss. This study investigates the potential of millet seed oil (MSO) in promoting the proliferation of hair follicle dermal papilla cells (HFDPC) and stimulating hair growth in animals with testosterone-dependent hair growth inhibition as part of a study on dietary treatments to improve hair growth. MSO-treated HFDPC significantly increased cell proliferation and phosphorylation of AKT, S6K1, and GSK3ß proteins. This induces ß-catenin, a downstream transcription factor, to translocate to the nucleus and increase the expression of factors related to cell growth. In a C57BL/6 mice model in which hair growth was inhibited by subcutaneous testosterone injection after shaving the dorsal skin, oral administration of MSO stimulated hair growth in the subject mice by increasing the size and number of hair follicles. These results suggest that MSO is a potent agent that may help prevent or treat androgenetic alopecia by promoting hair growth.

19.
J Gerontol A Biol Sci Med Sci ; 78(7): 1108-1115, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-36821434

RESUMO

The human life span has been markedly extended since the 1900s, but it has not brought healthy aging to everyone. This increase in life expectancy without an increase in healthspan is a major global concern that imposes considerable health care budgets and degrades the quality of life of older adults. Dietary interventions are a promising strategy to increase healthspan. In this study, we evaluated whether a Gardenia jasminoides Ellis fruit ethanol extract (GFE) increases the life span of Caenorhabditis elegans (C. elegans). Treatment with 10 mg/mL GFE increased the life span by 27.1% when compared to the vehicle group. GFE (10 mg/mL) treatment improved healthspan-related markers (pharyngeal pumping, muscle quality, age-pigment, and reactive oxygen species accumulation) and exerted a protective effect against amyloid ß 1-42 toxicity. These effects of GFE are related to the inhibition of insulin/IGF-1 signaling and activation of SKN-1/Nrf, thereby promoting the expression of stress resistance-related genes. In addition, treatment with 10 mM geniposide, the most abundant component of GFE, improved healthspan-related markers and increased life span by 18.55% when compared to the vehicle group. Collectively, these findings demonstrate that GFE and its component geniposide increase the life span along with healthspan in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Gardenia , Animais , Humanos , Idoso , Caenorhabditis elegans , Frutas , Peptídeos beta-Amiloides , Qualidade de Vida , Proteínas de Caenorhabditis elegans/genética , Longevidade
20.
Aging (Albany NY) ; 15(1): 21-36, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36622277

RESUMO

Dietary restriction (DR) is a highly effective and reproducible intervention that prolongs longevity in many organisms. The molecular mechanism of action of DR is tightly connected with the immune system; however, the detailed mechanisms and effective downstream factors of immunity that mediate the beneficial effects of DR on aging remain unknown. Here, to investigate the immune signaling that mediates DR effects, we used Caenorhabditis elegans, which has been widely used in research, to understand the underlying molecular mechanisms of aging and immunity. We found that the F-box gene, fbxc-58, a regulator of the innate immune response, is a novel mediator of DR effects on extending the health span of C. elegans. fbxc-58 is upregulated by DR and is necessary for DR-induced lifespan extension and physical health improvement in C. elegans. Furthermore, through DR, fbxc-58 prevents disintegration of the mitochondrial network in body wall muscle during aging. We found that fbxc-58 is a downstream target of the ZIP-2 and PHA-4 transcription factors, the well-known DR mediator, and fbxc-58 extends longevity in DR through an S6 kinase-dependent pathway. We propose that the novel DR effector, fbxc-58, could provide a new mechanistic understanding of the effects of DR on healthy aging and elucidate the signaling mechanisms that link immunity and DR effects with aging.


Assuntos
Proteínas de Caenorhabditis elegans , Envelhecimento Saudável , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Imunidade Inata/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...