Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 41(1): 64-76, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36242771

RESUMO

Preconditioning of mesenchymal stem/stromal cells (MSCs) with the inflammatory cytokine IFN-γ enhances not only their immunosuppressive activity but also their expression of HLA and proinflammatory genes. We hypothesized that prevention of the upregulation of inflammatory cytokines and HLA molecules in IFN-γ-primed MSCs would render these cells more immunosuppressive and less immunogenic. In this study, we discovered the following findings supporting this hypothesis: (1) activated human T cells induced the expression of IDO1 in MSCs via IFN-γ secretion and those MSCs in turn inhibited T-cell proliferation in an AHR-dependent fashion; (2) there was no difference in the expression of IDO1 and HLA-DR in MSCs after priming with a low dose (25 IU/mL) versus a high dose (100 IU/mL) of IFN-γ; (3) the transient addition of bortezomib, a proteasome inhibitor, to culture MSCs after IFN-γ priming decreased the expression of HLA-DR, inflammatory cytokine genes and Vcam1 while increasing the expression of IDO1 and the production of L-kynurenine; finally, MSCs primed with a combination of a low dose of IFN-γ and bortezomib were more effective in inhibiting Th17-mediated idiopathic pneumonia syndrome (IPS) and chronic colitis than unprimed MSCs. Our results suggest that bortezomib significantly eliminates the unfavorable effects of IFN-γ priming of MSCs (increased expression of MHC molecules and inflammatory cytokines and cell aggregation genes) and simultaneously increases their immunosuppressive activity by upregulating IDO1. Taken together, our newly established MSC priming method may contribute to MSC-based cell therapy for inflammatory diseases.


Assuntos
Citocinas , Interferon gama , Humanos , Bortezomib/farmacologia , Interferon gama/farmacologia , Interferon gama/metabolismo , Células Estromais/metabolismo
2.
Blood ; 139(22): 3325-3339, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35226727

RESUMO

We previously demonstrated that interferon γ (IFN-γ) derived from donor T cells co-opts the indoleamine 2,3-dioxygenase 1 (IDO1) → aryl hydrocarbon receptor (AHR) axis to suppress idiopathic pneumonia syndrome (IPS). Here we report that the dysregulated expression of AP-1 family genes in Ahr-/- lung epithelial cells exacerbated IPS in allogeneic bone marrow transplantation settings. AHR repressed transcription of Jund by preventing STAT1 from binding to its promoter. As a consequence, decreased interleukin-6 impaired the differentiation of CD4+ T cells toward Th17 cells. IFN-γ- and IDO1-independent induction of Ahr expression indicated that the AHR agonist might be a better therapeutic target for IPS than the IDO1 activator. We developed a novel synthetic AHR agonist (referred to here as PB502) that potently inhibits Jund expression. PB502 was highly effective at inducing AHR activation and ameliorating IPS. Notably, PB502 was by far superior to the endogenous AHR ligand, L-kynurenine, in promoting the differentiation of both mouse and human FoxP3+ regulatory CD4+ T cells. Our results suggest that the IDO1-AHR axis in lung epithelial cells is associated with IPS repression. A specific AHR agonist may exhibit therapeutic activity against inflammatory and autoimmune diseases by promoting regulatory T-cell differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pneumonia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Camundongos , Pneumonia/tratamento farmacológico , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA