Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(43): e202311168, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37700529

RESUMO

Aryl alcohol-type or phenolic fluorophores offer diverse opportunities for developing bioimaging agents and fluorescence probes. Due to the inherently acidic hydroxyl functionality, phenolic fluorophores provide pH-dependent emission signals. Therefore, except for developing pH probes, the pH-dependent nature of phenolic fluorophores should be considered in bioimaging applications but has been neglected. Here we show that a simple structural remedy converts conventional phenolic fluorophores into pH-resistant derivatives, which also offer "medium-resistant" emission properties. The structural modification involves a single-step introduction of a hydrogen-bonding acceptor such as morpholine nearby the phenolic hydroxyl group, which also leads to emission bathochromic shift, increased Stokes shift, enhanced photo-stability and stronger emission for several dyes. The strategy greatly expands the current fluorophores' repertoire for reliable bioimaging applications, as demonstrated here with ratiometric imaging of cells and tissues.

2.
Chem Soc Rev ; 52(18): 6344-6358, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37608780

RESUMO

Organic fluorophores aided by current microscopy imaging modalities are essential for studying biological systems. Recently, red/near-infrared emitting fluorophores have attracted great research efforts, as they enable bioimaging applications with reduced autofluorescence interference and light scattering, two significant obstacles for deep-tissue imaging, as well as reduced photodamage and photobleaching. Herein, we analyzed the current strategies to convert key organic fluorophores bearing xanthene, coumarin, and naphthalene cores into longer wavelength-emitting derivatives by focussing on their effectiveness and limitations. Together, we introduced typical examples of how such fluorophores can be used to develop molecular probes for biological analytes, along with key sensing features. Finally, we listed several critical issues to be considered in developing new fluorophores.


Assuntos
Corantes Fluorescentes , Sondas Moleculares , Ionóforos , Microscopia
3.
ACS Sens ; 8(7): 2791-2798, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37405930

RESUMO

Aminopeptidase N (APN), a transmembrane ectoenzyme, plays multifunctional roles in cell survival and migration, angiogenesis, blood pressure regulation, and viral uptake. Abnormally high levels of the enzyme can be found in some tumors and injured liver and kidney. Therefore, noninvasive detection methods for APN are in demand for diagnosing and studying the associated diseases, leading to two dozen activatable small-molecule probes reported up to date. All of the known probes, however, analyze the enzyme activity by monitoring fluorescent molecules inside cells, despite the enzymatic reaction taking place on the outer cell membrane. In this case, different cell permeability and enzyme kinetics can cause false signal data. To address this critical issue, we have developed two cell-membrane-localizing APN probes whose enzymatic products also localize the outer cell membrane. The probes selectively respond to APN with ratiometric fluorescence signal changes. A selected probe, which has two-photon imaging capability, allowed us to determine the relative APN levels in various organ tissues for the first time: 4.3 (intestine), 2.1 (kidney), 2.7 (liver), 3.2 (lung), and 1.0 (stomach). Also, a higher APN level was observed from a HepG2-xenograft mouse tissue in comparison with the normal tissue. Furthermore, we observed a significant APN level increase in the mouse liver of a drug (acetaminophen)-induced liver injury model. The probe thus offers a reliable means for studying APN-associated biology including drug-induced hepatotoxicity simply by ratiometric imaging.


Assuntos
Antígenos CD13 , Humanos , Animais , Camundongos , Antígenos CD13/metabolismo , Fluorescência , Membrana Celular/metabolismo , Transporte Biológico
4.
J Org Chem ; 88(9): 5563-5571, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37010000

RESUMO

Fluorescent probes bearing a reactive moiety of 1,1-dicyanovinyl are known to detect several biological species including bisulfite and hypochlorous acid, which, however, possess a selectivity issue among those analytes. Structural modifications of the reactive group for optimal steric and electron effects based on theoretical calculations led us to address the selectivity issue, offering new reactive moieties that provide complete analyte selectivity, including that between bisulfite and hypochlorous acid, in cells as well as in solution.

5.
Angew Chem Int Ed Engl ; 62(15): e202300580, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792537

RESUMO

Fluorescence monitoring of ATP in different organelles is now feasible with a few biosensors developed, which, however, show low sensitivity, limited biocompatibility, and accessibility. Small-molecule ATP probes that alleviate those limitations thus have received much attention recently, leading to a few ATP probes that target several organelles except for the nucleus. We disclose the first small-molecule probe that selectively detects nuclear ATP through reversible binding, with 25-fold fluorescence enhancement at pH 7.4 and excellent selectivity against various biologically relevant species. Using the probe, we observed 2.1-3.3-fold and 3.9-7.8-fold higher nuclear ATP levels in cancerous cell lines and tumor tissues compared with normal cell lines and tissues, respectively, which are explained by the higher nuclear ATP level in the mitosis phase. The probe has great potential for studying nuclear ATP-associated biology.


Assuntos
Núcleo Celular , Corantes Fluorescentes , Corantes Fluorescentes/química , Fluorescência , Linhagem Celular , Trifosfato de Adenosina
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122313, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628863

RESUMO

A novel benzo[a]phenoxazine-based fluorescent dye LV2 has been employed as a molecular reporter to probe recognition of a linker histone protein H1 by calf-thymus DNA (DNA). Fluorescence lifetime of LV2 buried in the globular domain of H1 (∼2.1 ns) or in the minor groove of DNA (∼0.93 ns) increases significantly to 2.65 ns upon interaction of the cationic protein with DNA indicating formation of the H1-DNA complex. The rotational relaxation time of the fluorophore buried in the globular domain of H1 increases significantly from 2.2 ns to 8.54 ns in the presence of DNA manifesting the recognition of H1 by DNA leading to formation of the H1-DNA complex. Molecular docking and molecular dynamics (MD) simulations have shown that binding of LV2 is energetically most favourable in the interface of the H1-DNA complex than in the globular domain of H1 or in the minor groove of DNA. As a consequence, orientational relaxation of the LV2 is significantly hindered in the protein-DNA interface compared to H1 or DNA giving rise to a much longer rotational relaxation time (8.54 ns) in the H1-DNA complex relative to that in pure H1 (2.2 ns) or DNA (5.7 ns). Thus, via a significant change of fluorescence lifetime and rotational relaxation time, the benzo[a]phenoxazine-based fluorescent dye buried within the globular domain of the cationic protein, or within the minor groove of DNA, reports on recognition of H1 by DNA.


Assuntos
DNA , Corantes Fluorescentes , Corantes Fluorescentes/química , Simulação de Acoplamento Molecular , DNA/química , Análise Espectral , Simulação de Dinâmica Molecular
7.
ACS Sens ; 7(12): 3790-3799, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36413708

RESUMO

Human serum albumin exerts multifunctions, such as maintaining the oncotic pressure of plasma, carrying hydrophobic molecules, and acting as the most important antioxidant in the blood. Lower serum albumin levels are linked to several cardiovascular diseases, and dysfunction of albumin reabsorption in the kidney is linked to liver disease, renal disorder, and diabetes. Albumin is thus a powerful diagnostic and prognostic marker; however, its quantification in urine by readily affordable tools is challenging owing to its very low concentration. To address this issue, we developed a ratiometric fluorescent probe with multiple advantages through a systematic structure variation of a benzocoumarin fluorophore and, further, a prototype of a smartphone-based point-of-care device. We determined albumin levels in urine and observed that a smoking person has notably higher urine albumin than a nonsmoking person. The cheap device provides a promising tool for albumin-associated disease diagnosis in communities with limited resources.


Assuntos
Líquidos Corporais , Albumina Sérica Humana , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Albuminas , Urinálise
8.
Bioconjug Chem ; 33(8): 1543-1551, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35900309

RESUMO

In situ conjugation of fluorescent molecules to biomolecules such as proteins under spatiotemporal control offers a powerful means for studying biological systems. For that purpose, the o-quinone methide chemistry involving a sequence of the trigger-release-conjugation (TRC) process provides a versatile conjugation method. We have developed a new TRC platform bearing a quaternary ammonium salt for the release process, which can be structurally modified and readily synthesized from commonly used aryl alcohol-type organic fluorophores under environmentally benign conditions. We show that different aryl alcohol fluorophores containing the o-(morpholinium)methyl group for the release process allow efficient fluorophore labeling of proteins under both light- and chemical-triggering conditions. The bioconjugation in cells as well as in tissues was further demonstrated with an o-(morpholinium)methyl analogue containing a triggering group sensitive to reactive oxygen species. The new TRC system thus provides a versatile and unique platform for in situ fluorophore labeling of proteins in biological systems under spatiotemporal control.


Assuntos
Indolquinonas , Corantes Fluorescentes/química , Indolquinonas/química , Ionóforos , Estrutura Molecular , Proteínas
9.
ACS Sens ; 7(4): 1068-1074, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35353484

RESUMO

Cancer cells undergo unscheduled proliferation resulting from dysregulation of the cell cycle, and hence, evaluation in tumor is of keen interest to examine the invasiveness and recurrence of cancer in the lesion. Molecular probes capable of discriminating actively growing tumor from resting ones remain unexplored despite their vast importance. Here, we describe a novel strategy to visualize invasive areas in tumor with a fluorescence probe that implements synergistic fluorescence response toward the slightly acidic environment of tumor and an ATP-abundant nature of actively growing cells. The probe has been designed for ultrafast detection of ATP with high specificity. We demonstrate its utility in visualizing invasive areas in tumor by distinguishing basal cell carcinomas and squamous cell carcinomas at their early stages by two-photon microscopy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Trifosfato de Adenosina , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Humanos , Prótons , Pele/metabolismo , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia
10.
Anal Chem ; 94(8): 3494-3500, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171555

RESUMO

The flavin adenine dinucleotide (FAD) is an indispensable coenzyme in live cells. It acts as a catalyst in many redox responsive metabolic reactions, including oxidative phosphorylation in mitochondria. The real-time monitoring of flavin is important to understand the disorder in the metabolic process, redox system, etc. Thus, we have developed a fluorescent probe CPy-1 that noncovalently binds with flavin to exhibit the FRET process. 1H- NMR and docking study indicated that there is a strong hydrophobic interaction between flavins and CPy-1. Also, a π-π stacking between isoalloxazine ring in flavin and quinoline and coumarin moieties of CPy-1 favors self-assembly. The nontoxic probe CPy-1 could distinguish cancer cells from normal cells based on expressions of endogenous FAD.


Assuntos
Flavina-Adenina Dinucleotídeo , Corantes Fluorescentes , Dinitrocresóis , Mononucleotídeo de Flavina , Flavina-Adenina Dinucleotídeo/química , Flavinas/química , Flavinas/metabolismo , Transferência Ressonante de Energia de Fluorescência
11.
Anal Chem ; 94(2): 1373-1381, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34990113

RESUMO

Elastase, a serine protease, plays important roles in our body in food digestion and defence against pathogens. Particularly, the elastase present in neutrophils is directly associated with inflammatory bowel disease (IBD). Through a rational approach, we have developed a fluorescent elastase probe that has multiple advantages for biological applications including two-photon ratiometric imaging capability. Using the probe, which is capable of detecting intracellular elastase activity associated with inflammation, we have investigated elastase level changes in various mouse organs under an IBD condition for the first time. The results reveal notably higher elastase levels in the liver and duodenum of the healthy mice than in the other investigated organs. Under the IBD condition, we observed significant elastase level changes in the liver, duodenum, colon, and lung. The downregulation of elastase in the liver under the IBD condition suggests migration of neutrophils into the upregulated organs. The notable upregulation of elastase in the duodenum is explained by self-production of elastase, in addition to the neutrophil migration from the liver. We have observed little elastase level changes in selected organs of immune-deficient mice raised under the normal and IBD conditions, which supports the neutrophil migration as the reason for perturbed elastase activity in the healthy mice. The results also suggest an important role of the liver in maintaining the immune response associated with the inflammation-induced elastase level changes. The probe offers an ideal tool for mapping neutrophil migration in body. Further understanding of the elastase-associated biology and diagnosis of IBD by monitoring affected organs are anticipated using the probe.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Inflamação , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Elastase de Leucócito , Camundongos , Neutrófilos
12.
Cell Rep ; 37(6): 109958, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758301

RESUMO

Impaired hepatic glucose and lipid metabolism are hallmarks of type 2 diabetes. Increased sulfide production or sulfide donor compounds may beneficially regulate hepatic metabolism. Disposal of sulfide through the sulfide oxidation pathway (SOP) is critical for maintaining sulfide within a safe physiological range. We show that mice lacking the liver- enriched mitochondrial SOP enzyme thiosulfate sulfurtransferase (Tst-/- mice) exhibit high circulating sulfide, increased gluconeogenesis, hypertriglyceridemia, and fatty liver. Unexpectedly, hepatic sulfide levels are normal in Tst-/- mice because of exaggerated induction of sulfide disposal, with associated suppression of global protein persulfidation and nuclear respiratory factor 2 target protein levels. Hepatic proteomic and persulfidomic profiles converge on gluconeogenesis and lipid metabolism, revealing a selective deficit in medium-chain fatty acid oxidation in Tst-/- mice. We reveal a critical role of TST in hepatic metabolism that has implications for sulfide donor strategies in the context of metabolic disease.


Assuntos
Diabetes Mellitus/patologia , Dislipidemias/patologia , Gluconeogênese , Fígado/patologia , Sulfetos/metabolismo , Tiossulfato Sulfurtransferase/fisiologia , Animais , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Dislipidemias/etiologia , Dislipidemias/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Proteoma/metabolismo
13.
ACS Sens ; 6(9): 3253-3261, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34467757

RESUMO

Reactive oxygen species (ROS) produced by an inflammatory response in the brain are associated with various neurological disorders. To investigate ROS-associated neuroinflammatory diseases, fluorescent probes with practicality are in demand. We have investigated hypochlorous acid, an important ROS, in the brain tissues of neuroinflammation and maternal immune activation (MIA) model mice, using a new fluorescent probe. The probe has outstanding features over many known probes, such as providing two bright ratio signals in cells and tissues in deep-red/near-infrared wavelength regions with a large spectral separation, in addition to being strongly fluorescent, photo- and chemo-stable, highly selective and sensitive, fast responding, and biocompatible. We have found that the level of hypochlorous acid in the brain tissue of a neuroinflammatory mouse model was higher (2.7-4.0-fold) compared with that in normal brain tissue. Furthermore, the level of hypochlorous acid in the brain tissue of a MIA mouse model was higher (1.2-1.3-fold) compared with that in the normal brain tissue. The "robust" probe provides a practical tool for studying ROS-associated neurological disorders.


Assuntos
Encéfalo , Ácido Hipocloroso , Animais , Camundongos
14.
Anal Chem ; 93(20): 7523-7531, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33983712

RESUMO

NAD(P)H quinone oxidoreductase-1 (NQO1), a protective enzyme against cellular oxidative stress, is expressed abnormally high in solid tumors and thus recognized as a cancer biomarker. To develop a fluorescent NQO1 probe with practicality, we investigated benzo-rosol fluorophores linked with a known self-immolative quinone substrate. Four probe candidates exhibited ratiometric sensing behavior toward the enzyme, satisfying our orbital mismatch stratagem proposed before, under dual-excitation and dual-emission conditions that alleviate the spectral overlap issue commonly observed with the ratiometric probes based on intramolecular charge-transfer change. Among the candidates, two ester-linked compounds exhibited hydrolytic instability to water or an esterase, discouraging us to develop such ester-linked probes. One ether-linked, hydrolytically stable probe provided brighter cellular fluorescence than the other and thus was applied to ratiometric imaging of NQO1 in cells and tissues. We found that the enzyme activity levels are much different in organ tissues: stomach (56), kidney (22), colon (9.8), testis (7.8), bladder (5.6), lung (1.2), and muscle (1.0). Furthermore, a markedly high enzyme level (14.6-fold) was observed in a xenograft tumor tissue compared with that in a normal tissue, which suggests that such an NQO1 probe is promising for cancer diagnosis and for studying the enzyme-associated biology.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Neoplasias , Corantes Fluorescentes , Humanos , NAD , Quinonas
15.
ACS Appl Bio Mater ; 4(3): 2089-2096, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014336

RESUMO

The cell membrane regulates the flux of materials in and out of cell, cell adhesion, and signaling. Fluorophores that selectively localize on it are in demand for investigations of the molecular events occurring on the outer cell membrane. Commercial membrane trackers based on phospholipids are structurally complex and difficult to modify further. We disclose the zwitterionic (naphthylvinyl)pyridinium dyes that selectively localize on the outer cell membrane and emit blue, green, and red fluorescence, respectively. Notably, they are structurally compact and provide bright fluorescence images of the cell membrane. By comparing with control compounds, we identified minimal structural elements for the "robust" localization of dye on the outer cell membrane. Further, the dyes are two-photon active, enabling high-resolution, deep-tissue imaging. One of the dyes was used to image a spleen tissue, which provided high-resolution fluorescent images with a distinct morphology. In addition, the materials and results disclosed are valuable for the development of membrane-targeting probes and structurally compact fluorophores.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Naftilvinilpiridina/química , Imagem Óptica , Células A549 , Materiais Biocompatíveis/síntese química , Membrana Celular/química , Membrana Celular/metabolismo , Corantes Fluorescentes/síntese química , Humanos , Teste de Materiais , Estrutura Molecular , Naftilvinilpiridina/análogos & derivados , Naftilvinilpiridina/síntese química , Tamanho da Partícula
16.
ACS Sens ; 6(1): 148-155, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33334101

RESUMO

Hypoxia, a condition of oxygen deficiency in tissues, features various diseases including solid tumor. Under hypoxia, several reductases such as nitroreductases are elevated. Based on this fact, we have investigated an indirect way to assess the hypoxia susceptibility of different organ tissues (mouse lung, heart, spleen, kidney, and liver) by detecting nitroreductase present within. Among the organs, the kidney showed a notable susceptibility to hypoxia, which was due to the renal medulla, not due to the renal cortex, as observed by ratiometric fluorescence imaging with a probe. The probe features ratiometric signaling, NIR-emitting, two-photon absorbing, and pH-insensitive emission properties, offering a practical tool for studying the nitroreductase activity and, furthermore, hypoxia-associated biological processes.


Assuntos
Corantes Fluorescentes , Nitrorredutases , Animais , Hipóxia , Camundongos , Imagem Óptica , Fótons
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119088, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33187882

RESUMO

A rational approach to develop a fluorescent probe for sensing biologically "extreme" acidity (pH <3) is disclosed. The probe, a push-full type 3-(imidazolyl)benzocoumarin dye, has the lowest pKa = 1.3 among ratiometric probes known so far, which is ascribed due to a unique sensing mechanism. The probe has high quantum yields, high chemical stability and good aqueous solubility. The probe was successfully applied to ratiometric fluorescence imaging of intrabacterial acidity from pH 4.0-1.0, offering a practical means for studying biological systems under the extreme pH conditions.


Assuntos
Ácidos , Corantes Fluorescentes , Diagnóstico por Imagem , Fluorescência , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência
18.
Chem Commun (Camb) ; 56(72): 10556-10559, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32785337

RESUMO

The benzocoumarin dyes fluoresce negligibly in aqueous media but very strongly in cells, whereas representative conventional dyes display contrasting behaviour; the distinct emission behaviour of the fluorophores in organic solutions, in aqueous media, and in cell convinces the uniqueness of the cellular environment. The in cellulo superbright benzocoumarins also reveal an environment-insensitive emission behaviour, which is required for the reliable analysis via ratiometric imaging.


Assuntos
Cumarínicos/química , Fluorescência , Corantes Fluorescentes/química , Linhagem Celular Tumoral , Humanos , Soluções
19.
Anal Chem ; 92(18): 12678-12685, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32808765

RESUMO

γ-Glutamyl transpeptidase (GGT), a cell surface-bound protease, is associated with various diseases including cancer. The detection of the enzyme activity is an important subject, leading to about 40 activatable fluorescent probes so far. All of them, however, lack the membrane-localizing ability, raising a reliability issue in the quantitative analysis. Disclosed is the first fluorescent probe that senses the cell surface-bound enzyme, which, furthermore, is capable of ratiometric as well as two-photon imaging with desirable features. Ratiometric imaging of cancer cell lines reveals a 6.4-8.4-fold higher GGT levels than those in normal cell lines. A comparison of the enzyme activity in organ tissues of normal and tumor xenograft mice reveals notably different levels of enzyme activity depending on the kind of tissue. Normal tissues exhibited comparable levels of enzyme activity, except the kidney that has significantly higher GGT activity (2.7-4.0-fold) than the other organs. Compared with the normal tissues, considerably higher enzyme activity was observed in the tumor tissues of the thigh (4.0-fold), colon (2.5-fold), lung (3.6-fold), and liver (2.1-fold), but essentially no enhanced activity in the tumor tissues of the spleen, stomach, and pancreas and a comparable level in both the tumor and normal kidney tissues were observed. The probe offers practical means for studying GGT-associated biology in cells and tissues by one- as well as two-photon ratiometric imaging.


Assuntos
Membrana Celular/enzimologia , Corantes Fluorescentes/química , Fótons , gama-Glutamiltransferase/análise , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Imagem Óptica , gama-Glutamiltransferase/metabolismo
20.
Chem Commun (Camb) ; 56(51): 7025-7028, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32452476

RESUMO

Near-infrared-emitting hemicyanine dyes are widely used in activatable fluorescent probes for various biological analytes; however, they are chemically unstable and show photoinstability, as shown here with naphthalene-based hemicyanines containing a typical hemicyanine moiety, 2-indolium. These issues can be resolved with a 4-pyridinium derivative, which also has good two-photon imaging capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...