Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731341

RESUMO

Sortase A (SrtA) is responsible for anchoring surface proteins to the cell wall, and has been identified as a promising target developing anti-infective drugs of Gram-positive bacteria. The aim of the study was to identify inhibitors of Streptococcus agalactiae (S. agalactiae) SrtA from natural compounds to overcome the spread of antibiotic resistance in aquaculture. Here, we found that the MIC of fraxetin against S. agalactiae was higher than 256 µg/mL, indicating that fraxetin had no anti- S. agalactiae activity. But fraxetin could dose-dependently decrease the activity of SrtA in vitro at concentrations ranging between 4-32 µg/mL by a fluorescence resonance energy transfer (FRET) assay. Moreover, the inhibition of SrtA by fraxetin decreased the anchoring of surface proteins with the LPXTG motif to the cell wall by detecting the immunofluorescence change of serine-rich repeat protein 1 (Srr1) on the bacterial cell surface. The results of fibronectin binding and cell adhesion assays indicated that fraxetin could significantly decrease the adhesion ability of S. agalactiae in a dose-dependent manner. The results were further proven by immunofluorescence staining. Animal challenge results showed that treatment with fraxetin could reduce the mortality of tilapia infected with S. agalactiae to 46.67%, indicating that fraxetin could provide a significant amount of protection to tilapia by inactivating SrtA. Taken together, these findings provided a novel inhibitor of S. agalactiae SrtA and a promising candidate for treating S. agalactiae infections in aquaculture.

2.
Emerg Infect Dis ; 30(6): 1125-1132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781928

RESUMO

During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease.


Assuntos
Doenças dos Peixes , Peixes , Yersiniose , Yersinia ruckeri , Yersiniose/veterinária , Yersiniose/microbiologia , Yersiniose/epidemiologia , Animais , China/epidemiologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/epidemiologia , Yersinia ruckeri/genética , Peixes/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana
3.
Animals (Basel) ; 14(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612297

RESUMO

Sulfamethoxazole is a widely used antimicrobial drug used to treat bacterial diseases in aquaculture. To understand the gene expression in channel catfish liver after treatment with sulfamethoxazole, in this study, the treatment group received sulfamethoxazole (100 mg/kg bw), which was administered orally once, and samples were taken at 5 h, 12 h, and 6 d after the administration of sulfamethoxazole, while the control group was orally administered sterile water. To further identify potentially significant genes, a transcriptome analysis using RNA-seq was carried out. More than 50 million high-quality reads were found. After filtering and quality analysis, these reads were identified as 54,169,682, 51,313,865, 51,608,845, and 49,333,491. After counting 23,707 of these transcripts for gene expression, it was discovered that 14,732 of them had genes with differential expression. Moreover, we found that the annotation with the most GO variation was "cellular process" (1616 genes), "metabolic process" (1268 genes), "binding" (1889 genes), and "catalytic activity" (1129 genes). KEGG pathways showed that the "metabolic pathway" was the pathway that was significantly enriched in both experimental groups when comparing the experimental groups: 5 h and 12 h (128 genes); 5 h and 6 d (332 genes); and 12 h and 6 d (348 genes). Also, UDP- glucuronosyltransferase (ugt), which is associated with glucuronidation, and UDP-glucuronosyltransferase 2C1-like (ugt2a1) showed significant upregulation. Carboxylesterase 5A-like (ces3), which promotes fatty acyl and cholesteryl ester metabolism, and the glutathione transferase family were upregulated in the expression of sulfamethoxazole metabolism in the liver, which significantly affected the metabolic effects of the drug. Meanwhile, dypd, uck2b, and rrm2, which are related to nucleotide synthesis and metabolism, were upregulated. Our study extends the knowledge of gene expression in drug metabolism in channel catfish and further provides insight into the molecular mechanism of sulfamethoxazole metabolism.

4.
Math Biosci Eng ; 21(3): 4117-4141, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38549321

RESUMO

By using the Ornstein-Uhlenbeck (OU) process to simulate random disturbances in the environment, and considering the influence of jump noise, a stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps was established, and the asymptotic behaviors of the stochastic Gilpin-Ayala mutualism model were studied. First, the existence of the global solution of the stochastic Gilpin-Ayala mutualism model is proved by the appropriate Lyapunov function. Second, the moment boundedness of the solution of the stochastic Gilpin-Ayala mutualism model is discussed. Third, the existence of the stationary distribution of the solution of the stochastic Gilpin-Ayala mutualism model is obtained. Finally, the extinction of the stochastic Gilpin-Ayala mutualism model is proved. The theoretical results were verified by numerical simulations.

6.
Ecotoxicol Environ Saf ; 273: 116138, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394759

RESUMO

The mechanism by which Y. ruckeri infection induces enteritis in Chinese sturgeon remains unclear, and the efficacy of drug prevention and control measures is not only poor but also plagued with numerous issues. We conducted transcriptomic and 16 S rRNA sequencing analyses to examine the differences in the intestinal tract of hybrid sturgeon before and after Y. ruckeri infection and florfenicol intervention. Our findings revealed that Y. ruckeri induced the expression of multiple inflammatory factors, including il1ß, il6, and various chemokines, as well as casp3, casp8, and multiple tumor necrosis factor family members, resulting in pathological injury to the body. Additionally, at the phylum level, the relative abundance of Firmicutes and Bacteroidota increased, while the abundance of Plesiomonas and Cetobacterium decreased at the genus level, altering the composition of the intestinal flora. Following florfenicol intervention, the expression of multiple apoptosis and inflammation-related genes was down-regulated, promoting tissue repair. However, the flora became further dysregulated, increasing the risk of infection. In conclusion, our analysis of the transcriptome and intestinal microbial composition demonstrated that Y. ruckeri induces intestinal pathological damage by triggering apoptosis and altering the composition of the intestinal microbiota. Florfenicol intervention can repair pathological damage, but it also exacerbates flora imbalance, leading to a higher risk of infection. These findings help elucidate the molecular mechanism of Y. ruckeri-induced enteritis in sturgeon and evaluate the therapeutic effect of drugs on intestinal inflammation in sturgeon.


Assuntos
Enterite , Doenças dos Peixes , Oncorhynchus mykiss , Tianfenicol/análogos & derivados , Yersiniose , Animais , Yersinia ruckeri/genética , Yersiniose/microbiologia , Doenças dos Peixes/patologia , Peixes , Inflamação
7.
Animals (Basel) ; 13(23)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067096

RESUMO

This study aims to determine the mass balance of robenidine hydrochloride (ROBH) in the body of Channel catfish (Ictalurus punctatus). ROBH was administered orally at a dose of 20 mg/kg; following drug administration, the water samples were collected at predetermined time points (12, 24, 48, 72, 96, 120, 144, and 168 h), the experimental fish were executed after the water samples were obtained at 168 h, and the tissue samples were collected separately from the bones. The water and tissue samples were analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) for concentrations of ROBH and its potential major metabolites, 4-chlorohippuric acid (PCHA) and 4-chlorobenzoic acid (PCBA). The tissue samples were prepared using a modified QuEChERS procedure; the water samples were prepared using a liquid-liquid extraction (LLE) procedure. The results show that the recovery rate of ROBH in fish is very low, less than 2% of the total amount of the drug, and the recovery in water can reach 80.7% of the total amount of the drug. The content of PCBA accounted for 42.4% of the total amount of the drug; the content of ROBH accounted for 38.3% of the total amount of the drug. The content of PCHA accounted for less than 1% of the total amount of the drug. The results show that, after a single administration, ROBH is rapidly metabolized in vivo and excreted in the form of ROBH as well as metabolite PCBA. ROBH and PCBA can be used as the main targets for the metabolism detection of ROBH in Channel catfish.

8.
Biofouling ; 39(8): 867-878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37968931

RESUMO

Aeromonas hydrophila is an opportunistic pathogen that can cause a number of infectious diseases in fish and is widely distributed in aquatic environments. Antibiotics are the main approach against A. hydrophila infections, while the emergence of resistant bacteria limits the application of antibiotics. Here, quorum-sensing (QS) was defined as the target and the inhibitory effects of neem oil against QS of A. hydrophila was studied. The results showed that neem oil could dose-dependently reduce aerolysin, protease, lipase, acyl-homoserine lactones (AHLs), biofilm and swarming motility at sub-inhibitory concentrations. Results of real-time PCR demonstrated that neem oil could down-regulate the transcription of aerA, ahyI and ahyR. Moreover, neem oil showed significant protections to A549 cells and a fish infection model. Taken together, these results indicated that neem oil could be chosen as a promising candidate for the treatment of A. hydrophila infections.


Assuntos
Biofilmes , Percepção de Quorum , Animais , Aeromonas hydrophila , Antibacterianos/farmacologia
9.
Animals (Basel) ; 13(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37889633

RESUMO

The objective of this study was to investigate the PPBRs of EF and CF in the plasma of yellow catfish, grass carp, and largemouth bass at different temperatures with different concentrations. A fast and simple ultrafiltration method was used to determine the PPBRs of EF and CF. Results showed that PPBRs of EF decreased from 37.71% to 9.66%, from 46.10% to 13.52%, and from 43.90% to 4.36% in the plasma of yellow catfish with the increase of concentration from 15 to 25 °C. The same trends of PPBRs of EF were presented in the plasma of grass carp and largemouth bass. In comparison to the data at the same concentration of EF at disparate temperatures, the PPBRs of EF at a concentration of 1 µg/mL increased from 37.71% to 46.10% and then decreased to 43.90% in the plasma of yellow catfish with elevated temperature from 15 to 25 °C. There is no obvious regularity with the rise of temperature, and the same phenomenon also were found in other concentrations and species. Meanwhile, the PPBRs of CF also decreased in the three species with the rise in concentration. Under the consistent concentration, the temperature-dependent regularities were not found in the PPBRs of CF. Overall, the increased concentration reduced the PPBRs of EF and CF in the plasma of three fish species, and the alteration in temperature only has a certain effect on the PPBRs of EF and CF.

10.
Fish Shellfish Immunol ; 141: 109051, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689228

RESUMO

Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.


Assuntos
Doenças dos Peixes , Ictaluridae , Ictalurivirus , Animais , Imunidade , Inflamação , Antivirais
11.
Animals (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627363

RESUMO

The objective of the present study was to investigate the residue depletion of EF and CF in yellow catfish to estimate its WTs in plasma and tissues after multiple oral doses for 3 days at 20 mg/kg at 15, 20, and 25 °C. Samples were collected at pre-designed time points after oral doses. A validated method was performed to quantify EF and CF in plasma and tissues by high-performance liquid chromatography. Statistical differences were conducted using one-way ANOVA analysis. According to the maximum residue limit of China and Europe considering 95% percentile with 95% confidence, the WTs were estimated to be 44, 72, 66, 99, and 95 days at 15 °C; 32, 66, 65, 86, and 73 days at 20 °C; and 32, 61, 64, 55, and 59 days at 25 °C in the plasma, muscle and skin, gill, liver, and kidney, respectively. We found that increased temperature shortened the WTs in plasma and tissues. Therefore, this study can help the risk assessment of EF in aquatic products for human health at different temperatures to avoid residue violation.

12.
Pathogens ; 12(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37513733

RESUMO

IL-10 and IL-6 play important roles in protecting against inflammation and clearing pathogens from the body. In this study, homologous compounds of IL-10 and IL-6 were identified in channel catfish, and their immune responses were analyzed. The CDS sequences of IL-10 and IL-6 were 549 bp and 642 bp, respectively, and showed the highest homology with Ameiurus melas. In addition, the expression of the IL-10 and IL-6 genes was ubiquitous in 10 tissues examined. IL-10 is highly expressed in the liver and slightly expressed in the gill. The high expression of the IL-6 gene was observed in the spleen, heart, and gonad, with the lowest levels in the liver. LPS, Poly(I:C), PHA, and PMA showed a highly significant increase in IL-10 and IL-6 expression 48 h after CCK stimulation (p < 0.01). Otherwise, Yersinia ruckeri, Streptococcus iniae, channel catfish virus, and deltamethrin induced IL-10 and IL-6 expression, varying in intensity between different organs. Our results suggest that IL-10 and IL-6 are involved in the immune response of the host against the pathogen.

13.
Fish Shellfish Immunol ; 140: 108941, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37463648

RESUMO

To promote the application of Agaricus bisporus polysaccharides (ABPs) in channel catfish (Ictalurus punctatus) culture, we evaluated the effects of ABPs on the growth, immunity, antioxidant, and antibacterial activity of channel catfish. When the amount of ABPs was 250 mg/kg, channel catfish's weight gain and specific growth rates increased significantly while the feed coefficient decreased. We also found that adding ABPs in the feed effectively increased the activities of ACP, MDA, T-SOD, AKP, T-AOC, GSH, and CAT enzymes and immune-related genes such as IL-1ß, Hsp70, and IgM in the head kidney of channel catfish. Besides, long-term addition will not cause pathological damage to the head kidney. When the amount of ABPs was over 125 mg/kg, the protection rate of channel catfish was more than 60%. According to the intestinal transcriptome analysis, the addition of ABPs promoted the expression of intestinal immunity genes and growth metabolism-related genes and enriched multiple related KEEG pathways. When challenged by Yersinia ruckeri infection, the immune response of channel catfish fed with ABPs was intenser and quicker. Additionally, the 16S rRNA gene sequencing analysis showed that the composition of the intestinal microbial community of channel catfish treated with ABPs significantly changed, and the abundance of microorganisms beneficial to channel catfish growth, such as Firmicutes and Bacteroidota increased. In conclusion, feeding channel catfish with ABPs promoted growth, enhanced immunity and antioxidant, and improved resistance to bacterial infections. Our current results might promote the use of ABPs in channel catfish and even other aquacultured fish species.


Assuntos
Doenças dos Peixes , Ictaluridae , Yersiniose , Animais , Antioxidantes/metabolismo , Yersinia ruckeri/fisiologia , RNA Ribossômico 16S , Dieta/veterinária , Polissacarídeos
14.
Antioxidants (Basel) ; 12(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372018

RESUMO

This study aimed to investigate the potential adverse effects of the practical application of copper sulfate on yellow catfish (Pelteobagrus fulvidraco) and to provide insights into the gill toxicity induced by copper sulphate. Yellow catfish were exposed to a conventional anthelmintic concentration of copper sulphate (0.7 mg/L) for seven days. Oxidative stress biomarkers, transcriptome, and external microbiota of gills were examined using enzymatic assays, RNA-sequencing, and 16S rDNA analysis, respectively. Copper sulphate exposure led to oxidative stress and immunosuppression in the gills, with increased levels of oxidative stress biomarkers and altered expression of immune-related differentially expressed genes (DEGs), such as IL-1ß, IL4Rα, and CCL24. Key pathways involved in the response included cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and Toll-like receptor signaling pathway. The 16S rDNA analysis revealed copper sulphate altered the diversity and composition of gill microbiota, as evidenced by a significant decrease in the abundance of Bacteroidotas and Bdellovibrionota and a significant increase in the abundance of Proteobacteria. Notably, a substantial 8.5-fold increase in the abundance of Plesiomonas was also observed at the genus level. Our findings demonstrated that copper sulphate induced oxidative stress, immunosuppression, and gill microflora dysbiosis in yellow catfish. These findings highlight the need for sustainable management practices and alternative therapeutic strategies in the aquaculture industry to mitigate the adverse effects of copper sulphate on fish and other aquatic organisms.

15.
Food Res Int ; 166: 112604, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914350

RESUMO

Doxycycline is an important medicine in aquaculture for treating fish diseases. However, its excess use causes residue exceeding to threaten human health. So, this study aimed to estimate a reliable withdrawal time (WT) of doxycycline (DC) in crayfish (Procambarus clarkii) based on statistical approaches and conduct a risk assessment for human health in the natural environment. Samples were collected at predetermined time points and determined by high-performance liquid chromatography. A novel statistical method was used to process the data of residue concentration. The homogeneity and linearity of the regressed line of data were evaluated by Bartlett's, Cochran's, and F tests. Outliers were excluded by establishing the standardized residual versus their cumulative frequency distribution on a normal probability scale. The calculated WT was 43 days in muscle of crayfish based on China and European stipulations. After 43 days, estimated daily intakes of DC were ranged from 0.022 to 0.052 µg/kg/d. Hazard Quotients were ranged from 0.007 to 0.014, which were far less than 1. These results indicated that established WT could avoid health risks for humans resulting from DC's residue in crayfish.


Assuntos
Astacoidea , Doxiciclina , Animais , Humanos , Astacoidea/química , Alimentos Marinhos/análise , Meio Ambiente , Medição de Risco
16.
Front Vet Sci ; 10: 1127788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950540

RESUMO

The aim of this investigation was to explore the effect of three different dose levels of emamectin benzoate (EMB) (50, 200, and 500 µg/kg bw) on pharmacokinetic characterizations, tissue distribution patterns, absolute bioavailability, and serum biochemical indices in crucian carp following oral administration at 22 ± 2°C, respectively. We further calculated the relevant parameters by detecting the concentration of EMB in the crucian carp by the ultra-HPLC detection method. The results showed that C max , AUC, and T 1/2z after oral administration showed a dose-dependent increase in plasma. Secondly, EMB has a long mean flow time (MRT) (51.88, 67.04, and 78.00 h, respectively). In conclusion, the elimination of the drug is slow, and the higher dose used, the slower elimination is. The distribution in various tissues of crucian carp was analyzed. The order of EMB levels in tissues of crucian carp was liver > gill > kidney > muscle plus skin > plasma. As for pharmacokinetic parameters in tissues, C max , AUC, and T 1/2z in tissues had a similar pattern as that in plasma. The absolute oral bioavailability of EMB (F%) in crucian carp was calculated to be approximately 52.70%. The serum biochemical indices including ALT and AST in experimental groups exhibited significant differences (P < 0.05) compared with the control group while ALB, ALP, TP, T-CHO, BUN, GRE, and GLU were not significantly different to the control group (P > 0.05). Briefly, EMB has the characteristic of quick absorption and slow elimination in crucian carp with a high bioavailability by PO route in crucian carp.

17.
Ecotoxicol Environ Saf ; 252: 114609, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739739

RESUMO

Interactions between host and pathogen are involving various dynamic changes in transcript expression and critical for understanding host immunity against infections and its associated pathogenesis. Herein, we established a model of channel catfish infected with Aeromonas veronii. The infected fish had prominent body surface bleeding, and the spleen showed hyperemia and swelling. Then, the spleen of channel catfish infected with A. veronii was analyzed by dual RNA sequencing (RNA-seq), and the transcriptome data were compared with uninfected channel catfish spleen or bacteria cultured in vitro. The transcript expression profile of pathogen-host interaction between A. veronii and channel catfish was successfully studied. During infection, the host was enriched for multiple immune-related signaling pathways, such as the Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and T cell receptor signaling pathway; and significantly upregulated for many innate immune-related genes, including IL-8. At the same time, we found that A. veronii mainly harmed the host spleen through hemolysin. Our current findings are of great significance in clarifying the pathogenesis of channel catfish induced by A. veronii and provide gene targets for developing preventive measures.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Ictaluridae , Animais , Ictaluridae/genética , Aeromonas veronii/genética , RNA-Seq , Baço , Análise de Sequência de RNA , Interações Hospedeiro-Patógeno/genética , Doenças dos Peixes/genética , Infecções por Bactérias Gram-Negativas/veterinária
18.
J Vet Pharmacol Ther ; 46(2): 125-135, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36691843

RESUMO

A plasma and tissue kinetic study of sulfadiazine (SDZ) and its metabolite, N4 -acetyl sulfadiazine (ACT-SDZ), was characterized in channel catfish (Ictalurus punctatus) following a single oral dose of 50 mg/kg at 18 and 24°C. Samples were collected at predetermined time points and determined by ultra-performance liquid chromatography. The classical one-compartmental method was used to estimate the pharmacokinetic parameters. Results showed that the changing of temperature was markedly influential on the kinetics of SDZ and ACT-SDZ in plasma and tissues. When the temperature was increased from 18 to 24°C, the elimination half-life (K10_HF) of SDZ was decreased in gill, kidney, and muscle + skin, but increased in liver and plasma. The K10_HF of ACT-SDZ also had a decreased trend in gill, liver, and plasma but had comparable values in kidney and muscle + skin. The absorption half-life (K01_HF), time to peak concentration (Tmax ), and area under concentration-time curve (AUC0-∞ ) of SDZ and ACT-SDZ all exhibited declined tendencies in plasma and tissues. The apparent volume of distribution (V_F) of SDZ in plasma was increased from 0.53 to 1.48 L/kg, and the apparent systemic total body clearance (Cl_F) was increased from 0.028 to 0.060 L/h/kg. In a word, K01_HF, Tmax , and AUC0-∞ of SDZ and ACT-SDZ were decreased in plasma and tissues with the increase of temperature, whereas the V_F and Cl_F of SDZ were increased. Meanwhile, we calculated the percentage of time profile of SDZ concentration more than minimum inhibitory concentration to total time (%T > MIC) to guide clinical usage of SDZ. When the dosage interval was 24 h, the values of %T > MIC were all >90% in plasma and most tissues. Therefore, we recommend an oral dose of SDZ at 50 mg/kg once per 24 h at 18-24°C against the fish pathogens with an MIC value of ≤6.4 µg/mL.


Assuntos
Ictaluridae , Sulfadiazina , Animais , Ictaluridae/metabolismo , Cinética , Temperatura , Meia-Vida
19.
Artigo em Inglês | MEDLINE | ID: mdl-36709862

RESUMO

The objective of this study was to examine the pharmacokinetic (PK) properties of enrofloxacin (EF) and its metabolite, ciprofloxacin (CF), in yellow catfish (Pelteobagrus fulvidraco) after a single oral dose of EF at 20 mg/kg at 20, 25, and 30 °C. Samples were collected at pre-designed time points and determined by high-performance liquid chromatography with a fluorescent detector. Results showed that most concentrations of EF and CF in plasma and tissues at the same time point at different temperatures were statistically significant. With the increase in temperature, the terminal half-life (T1/2λz) of EF and CF was first reduced from 20 to 25 °C but elevated from 25 to 30 °C in plasma, muscle + skin, gill, liver, and kidney, respectively. The area under the plasma concentration-time curves (AUClast) of EF were all decreased in plasma, muscle + skin, and gill except for that of EF in the liver and kidney. However, the AUClast and the apparent metabolic rate of CF were exhibited first elevated and then decreased trend. The apparent volume of distribution (Vz_F) of EF was first reduced from 20 to 25 °C but increased at 30 °C. The apparent total body clearance (CL_F) of EF was increased from 0.15 to 0.32 L/h·kg with the temperature elevation. These indicated that increased temperature markedly affected the PKs of EF and CF in yellow catfish. Through in-depth analysis, the EF dosage of 20 mg/kg is appropriate to use in yellow catfish at 20 and 25 °C but 30 °C.


Assuntos
Peixes-Gato , Ciprofloxacina , Animais , Enrofloxacina , Ciprofloxacina/farmacocinética , Temperatura , Fluoroquinolonas/análise , Fluoroquinolonas/farmacocinética , Cinética , Administração Oral
20.
Front Vet Sci ; 9: 937463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909695

RESUMO

The fast-growing demand for aquatic products has led to the rapid development of aquaculture. However, diseases caused by bacterial pathogens result in severe economic losses all over the world. Although the introduction of antibiotics to aquaculture decreased the mortality of infectious diseases, the emergence of antibiotic resistance caused treatment failure. Therefore, drugs with novel strategies are needed for combatting infections caused by resistant bacterial strains. In the present study, aerolysin was identified as a target for developing drugs from natural compounds against Aeromonas hydrophila (A. hydrophila) infections. We found that polydatin without an inhibitory effect against A. hydrophila growth could decrease the hemolysis mediated by aerolysin. In both western blot and qPCR assays, the addition of polydatin decreased the production of aerolysin by downregulating the aerolysin encoding gene. Moreover, cell viability and animal studies found that polydatin could reduce the pathogenesis of A. hydrophila both in vitro and in vivo. Taken together, these findings provided a novel approach and candidate for treating resistant A. hydrophila infections in aquaculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...