Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(12): 100672, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866481

RESUMO

Talaroconvolutin-A (TalaA) is a compound from the endophytic fungus T. convolutispora of the Chinese herbal medicine Panax notoginseng. Whether TalaA exerts anticancer activity in bladder cancer remains unknown. Using CCK8 assay, EdU staining, crystal violet staining, flow cytometry, living/dead cell staining, and Western blotting, we studied the anticancer activity of TalaA in vitro. Moreover, we performed xenograft tumor implantation. The antitumor effects were evaluated through H&E and immunohistochemistry staining. Proteomics was conducted to detect changes in the protein profile; transcriptomics was performed to detect changes in mRNA abundance; phosphoproteomics was used to detect changes in protein phosphorylation. TalaA inhibited tumor cell proliferation, DNA replication, and colony formation in a dose-dependent manner in bladder cancer cells. The IC50 values of TalaA on SW780 and UM-UC-3 cells were 5.7 and 8.2 µM, respectively. TalaA (6.0 mg/kg) significantly repressed the growth of xenografted tumors and did not affect the body weight nor cause obvious hepatorenal toxicity. TalaA arrested the cell cycle by downregulating cyclinA2, cyclinB1, and AURKB and upregulating p21/CIP. TalaA also elevated intracellular reactive oxygen species and upregulated transferrin and heme oxygenase 1 to induce ferroptosis. Moreover, TalaA was able to bind to MAPKs (MAPK1, MAPK8, and MAPK14) to inhibit the phosphorylation of ∗SP∗ motif of transcription regulators. This study revealed that TalaA inhibited bladder cancer by arresting cell cycle to suppress proliferation and triggering ferroptosis to cause cell death. Conclusively, TalaA would be a potential candidate for treating bladder cancer by targeting MAPKs, suppressing the cell cycle, and inducing ferroptosis.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias da Bexiga Urinária , Humanos , Antineoplásicos/farmacologia , Proteômica , Apoptose , Linhagem Celular Tumoral , Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Proliferação de Células , Perfilação da Expressão Gênica
2.
Eur J Pharmacol ; 951: 175799, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201626

RESUMO

As a key component of the COP9 signalosome complex, which participates in a variety of physiological processes, COPS3 is intimately related to multiple cancers. It promotes cell proliferation, progression and metastasis in several cancer cells. However, whether COPS3 participates in regulating anoikis, a specific kind of apoptosis and functions as an essential modulator of cell metastasis, has not yet been studied. Here, we found COPS3 is highly expressed in several cancers especially in osteosarcoma (OS). Overexpression of COPS3 promoted cell proliferation, cell viability and migration/invasion in both control cells and oxaliplatin (Oxa) treated cells. On the contrary, knockdown of COPS3 further enhanced the cytotoxicity of Oxa. Utilizing bioinformatics analysis, we found that COPS3 was higher expressed in the metastatic group, and associated with the extra-cellular matrix (ECM) receptor interaction pathway, which involve in regulating anoikis. In an anoikis model, COPS3 expression varied and genetic modification of COPS3 influenced the cell death enhanced by Oxa. PFKFB3, an essential modulator of glycolysis, was found to interact with COPS3. Inhibition of PFKFB3 promoted apoptosis and anoikis enhanced by Oxa, and COPS3 overexpression failed to rescue this cell death. On the contrary, in the COPS3 knockdown cells, overexpression of PFKFB3 recovered the anoikis resistance, indicating COPS3 function upstream of PFKFB3. In summary, our results elucidated that COPS3 modulated anoikis via affecting PFKFB3 in OS cancer cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Anoikis , Proliferação de Células , Oxaliplatina , Monoéster Fosfórico Hidrolases , Osteossarcoma/patologia , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fosfofrutoquinase-2/metabolismo
3.
Mol Biol Rep ; 49(10): 9877-9891, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35553342

RESUMO

Since generally confronting with the hypoxic and stressful microenvironment, cancer cells alter their glucose metabolism pattern to glycolysis to sustain the continuous proliferation and vigorous biological activities. Bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isoform 3 (PFKFB3) functions as an effectively modulator of glycolysis and also participates in regulating angiogenesis, cell death and cell stemness. Meanwhile, PFKFB3 is highly expressed in a variety of cancer cells, and can be activated by several regulatory factors, such as hypoxia, inflammation and cellular signals. In colorectal cancer (CRC) cells, PFKFB3 not only has the property of high expression, but also probably relate to inflammation-cancer transformation. Recent studies indicate that PFKFB3 is involved in chemoradiotherapy resistance as well, such as breast cancer, endometrial cancer and CRC. Cancer stem cells (CSCs) are self-renewable cell types that contribute to oncogenesis, metastasis and relapse. Several studies indicate that CSCs utilize glycolysis to fulfill their energetic and biosynthetic demands in order to maintain rapid proliferation and adapt to the tumor microenvironment changes. In addition, elevated PFKFB3 has been reported to correlate with self-renewal and metastatic outgrowth in numerous kinds of CSCs. This review summarizes our current understanding of PFKFB3 roles in modulating cancer metabolism to maintain cell proliferation and stemness, and discusses its feasibility as a potential target for the discovery of antineoplastic agents, especially in CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Glucose/metabolismo , Glicólise , Humanos , Inflamação , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Fosfofrutoquinase-2/genética , Microambiente Tumoral
4.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668324

RESUMO

FOXC1, a transcription factor involved in cell differentiation and embryogenesis, is demonstrated to be a negative regulator of Nanog in this study. FOXC1 is up-regulated in retinoic acid-induced differentiation of F9 Embryonal Carcinoma (EC) cells; furthermore, FOXC1 specifically inhibits the core pluripotency factor Nanog by binding to the proximal promoter. Overexpression of FOXC1 in F9 or knockdown in 3T3 results in the down-regulation or up-regulation of Nanog mRNA and proteins, respectively. In order to explain the mechanism by which FOXC1 inhibits Nanog expression, we identified the co-repressor HDAC2 from the FOXC1 interactome. FOXC1 recruits HDAC2 to Nanog promoter to decrease H3K27ac enrichment, resulting in transcription inhibition of Nanog. To the best of our knowledge, this is the first report that FOXC1 is involved in the epigenetic regulation of gene expression.


Assuntos
Células-Tronco de Carcinoma Embrionário/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Proteína Homeobox Nanog/genética , Regiões Promotoras Genéticas , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/patologia , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Histona Desacetilase 2/genética , Humanos , Camundongos , Células NIH 3T3 , Proteína Homeobox Nanog/metabolismo
5.
Cell Death Dis ; 11(11): 988, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203867

RESUMO

Ferropotsis is among the most important mechanisms of cancer suppression, which could be harnessed for cancer therapy. However, no natural small-molecule compounds with cancer inhibitory activity have been identified to date. In the present study, we reported the discovery of a novel ferroptosis inducer, talaroconvolutin A (TalaA), and the underlying molecular mechanism. We discovered that TalaA killed colorectal cancer cells in dose-dependent and time-dependent manners. Interestingly, TalaA did not induce apoptosis, but strongly triggered ferroptosis. Notably, TalaA was significantly more effective than erastin (a well-known ferroptosis inducer) in suppressing colorectal cancer cells via ferroptosis. We revealed a dual mechanism of TalaA' action against cancer. On the one hand, TalaA considerably increased reactive oxygen species levels to a certain threshold, the exceeding of which induced ferroptosis. On the other hand, this compound downregulated the expression of the channel protein solute carrier family 7 member 11 (SLC7A11) but upregulated arachidonate lipoxygenase 3 (ALOXE3), promoting ferroptosis. Furthermore, in vivo experiments in mice evidenced that TalaA effectively suppressed the growth of xenografted colorectal cancer cells without obvious liver and kidney toxicities. The findings of this study indicated that TalaA could be a new potential powerful drug candidate for colorectal cancer therapy due to its outstanding ability to kill colorectal cancer cells via ferroptosis induction.


Assuntos
Alcaloides/metabolismo , Neoplasias Colorretais/genética , Ferroptose/genética , Pirrolidinonas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus
6.
Acta Biochim Biophys Sin (Shanghai) ; 50(8): 793-799, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945210

RESUMO

The ability to self-renew is one of the most important properties of embryonic stem (ES) cells. Pluripotin (SC1), a small molecule with high activity and low toxicity, promotes self-renewal in mouse ES cells. SC1 can noticeably change the morphology of retinoic acid (RA)-induced F9 embryonic carcinoma cells (F9 cells). However, in the long term, RA and SC1 together cause cell apoptosis. When being added after 18-24 h of RA-induced F9 cell differentiation, SC1 transitorily activated Nanog and Oct4. Both Nanog and Oct4 were downregulated when SC1 and RA were added simultaneously. On the other hand, Klf4 was continually activated when SC1 was added between 6 and 24 h. Phosphorylated Erk1/2 protein levels were reduced from 6 to 24 h, whereas unphosphorylated Erk1 protein levels remained unchanged. A higher concentration of SC1 promoted cell self-renewal by strengthening the inhibition of Erk1/2 protein phosphorylation in F9 cells. Furthermore, SC1 and RA affect global DNA methylation by influencing the expressions of methylation-associated proteins, including Dnmt3b, Dnmt3l, Tet1, Tet2, and Tet3. In conclusion, SC1 inhibits the differentiation of RA-induced F9 cells mainly by reducing the levels of phosphorylated Erk1/2 and enhancing the expression of Klf4, although it also reduces DNA methylation, which may have an additional effect on ES cell differentiation.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Carcinoma Embrionário/genética , Carcinoma Embrionário/metabolismo , Carcinoma Embrionário/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
7.
Cell Physiol Biochem ; 44(5): 2057-2072, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29241165

RESUMO

BACKGROUND/AIMS: Self-renewal is one of the most important features of embryonic stem (ES) cells. SC1 is a small molecule modulator that effectively maintains the self-renewal of mouse ES cells in the absence of leukemia inhibitory factor (LIF), serum and feeder cells. However, the mechanism by which SC1 maintains the undifferentiated state of mouse ES cells remains unclear. METHODS: In this study, microarray and small RNA deep-sequencing experiments were performed on mouse ES cells treated with or without SC1 to identify the key genes and microRNAs that contributed to self-renewal. RESULTS: SC1 regulates the expressions of pluripotency and differentiation factors, and antagonizes the retinoic acid (RA)-induced differentiation in the presence or absence of LIF. SC1 inhibits the MEK/ERK pathway through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and pathway reporting experiments. Small RNA deep-sequencing revealed that SC1 significantly modulates the expression of multiple microRNAs with crucial functions in ES cells. The expression of miR124-3p is upregulated in SC1-treated ES cells, which significantly inhibits the MEK/ERK pathway by targeting Grb2, Sos2 and Egr1. CONCLUSION: SC1 enhances the self-renewal capacity of mouse ES cells by modulating the expression of key regulatory genes and pluripotency-associated microRNAs. SC1 significantly upregulates miR124-3p expression to further inhibit the MEK/ ERK pathway by targeting Grb2, Sos2 and Egr1.


Assuntos
Autorrenovação Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/metabolismo , Fator Inibidor de Leucemia/química , MAP Quinase Quinase Quinases/metabolismo , Camundongos , MicroRNAs/química , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/metabolismo , Análise de Sequência de RNA , Proteínas Son Of Sevenless/antagonistas & inibidores , Proteínas Son Of Sevenless/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos
8.
PLoS One ; 11(3): e0150936, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26938105

RESUMO

Understanding the mechanisms that regulate pluripotency of embryonic stem cells (ESCs) is important to ensure their safe clinical use. CHIR99021 (CHIR)-induced activation of Wnt/ß-catenin signaling promotes self-renewal in mouse ESCs (mESCs). ß-catenin functions individually or cooperates with transcription factors to activate stemness factors such as c-Myc, Esrrb, Pou5f1, and Nanog. However the relationship between the core pluripotent factor, Kruppel-like factor 4 (also known as GKLF or EZF) and Wnt/ß-catenin signaling, remains ambiguous in J1 mESCs. DNA microarray analysis revealed that CHIR-treatment promoted pluripotency-maintaining transcription factors and repressed germ layer specification markers. CHIR also promoted genes related to the development of extracellular regions and the plasma membrane to maintain pluripotency of J1 mESCs. Among the CHIR-regulated genes, Klf4 has not been reported previously. We identified a novel cis element in the Klf4 gene that was activated by ß-catenin in J1 mESCs. We determined that ß-catenin interacted with this cis element, identifying Klf4 as a ß-catenin target gene in this context. Moreover, several microRNAs that targeted the 3'-UTR of Klf4 mRNA were identified, with miR-7a being down-regulated by CHIR in a ß-catenin-independent manner in J1 mESCs. These data collectively suggest that CHIR enhances Klf4 expression by repressing miR-7a expression or canonical Wnt pathway activation.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , beta Catenina/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular , Regulação da Expressão Gênica , Ontologia Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/agonistas , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
9.
Stem Cells Int ; 2016: 1792573, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26770202

RESUMO

Embryonic stem cells (ESCs) have the ability to grow indefinitely and retain their pluripotency in culture, and this self-renewal capacity is governed by several crucial molecular pathways controlled by specific regulatory genes and epigenetic modifications. It is reported that multiple epigenetic regulators, such as miRNA and pluripotency factors, can be tightly integrated into molecular pathways and cooperate to maintain self-renewal of ESCs. However, mouse ESCs in serum-containing medium seem to be heterogeneous due to the self-activating differentiation signal of MEK/ERK. Thus, to seek for the crucial miRNA and key regulatory genes that establish ESC properties in MEK/ERK pathway, we performed microarray analysis and small RNA deep-sequencing of J1 mESCs treated with or without PD0325901 (PD), a well-known inhibitor of MEK/ERK signal pathway, followed by verification of western blot analysis and quantitative real-time PCR verification; we found that PD regulated the transcript expressions related to self-renewal and differentiation and antagonized the action of retinoic acid- (RA-) induced differentiation. Moreover, PD can significantly modulate the expressions of multiple miRNAs that have crucial functions in ESC development. Overall, our results demonstrate that PD could enhance ESC self-renewal capacity both by key regulatory genes and ES cell-specific miRNA, which in turn influences ESC self-renewal and cellular differentiation.

10.
Biochem Biophys Res Commun ; 465(3): 575-9, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26296469

RESUMO

Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression.


Assuntos
Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Animais , Linhagem Celular , Fator de Transcrição GATA1/genética , Proteínas de Homeodomínio/genética , Camundongos , Células-Tronco Embrionárias Murinas , Proteína Homeobox Nanog , Regiões Promotoras Genéticas/genética
11.
PLoS One ; 10(7): e0132566, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26162091

RESUMO

Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia , Tretinoína/farmacologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Ectoderma/efeitos dos fármacos , Ectoderma/metabolismo , Epigênese Genética/efeitos dos fármacos , Camundongos , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
Sci Rep ; 5: 8666, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25727520

RESUMO

Wnt/ß-catenin signalling plays a prominent role in maintaining self-renewal and pluripotency of mouse embryonic stem cells (mESCs). microRNAs (miRNAs) have critical roles in maintaining pluripotency and directing reprogramming. To investigate the effect of GSK3 inhibitors on miRNA expression, we analysed the miRNA expression profile of J1 mESCs in the absence or presence of CHIR99021 (CHIR) or 6-bromoindirubin-3'-oxime (BIO) by small RNA deep-sequencing. The results demonstrate that CHIR and BIO decrease mature miRNAs of most miRNA species, 90.4% and 98.1% of the differentially expressed miRNAs in BIO and CHIR treated cells were downregulated respectively. CHIR and BIO treatment leads to a slight upregulation of the primary transcripts of the miR-302-367 cluster and miR-181 family of miRNAs, these miRNAs are activated by Wnt/ß-catenin signalling. However, the precursor and mature form of the miR-302-367 cluster and miR-181 family of miRNAs are downregulated by CHIR, suggesting CHIR inhibits maturation of primary miRNA. Western blot analysis shows that BIO and CHIR treatment leads to a reduction of the RNase III enzyme Drosha in the nucleus. These data suggest that BIO and CHIR inhibit miRNA maturation by disturbing nuclear localisation of Drosha. Results also show that BIO and CHIR induce miR-211 expression in J1 mESCs.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Indóis/farmacologia , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Oximas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Forma Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Epigênese Genética/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia , Família Multigênica , Inibidores de Proteínas Quinases/farmacologia , Processamento Pós-Transcricional do RNA/genética , Ribonuclease III/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
13.
FEBS J ; 282(4): 685-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25491368

RESUMO

MicroRNAs (miRNAs), a group of noncoding RNAs, function as post-transcriptional gene regulators and control the establishment, self-renewal and differentiation of stem cells. Vitamin C has been recognized as a reprogramming enhancer because of its ability to induce a blastocyst-like state in embryonic stem cells (ESCs). However, knowledge on the regulation of miRNAs by vitamin C in ESCs is limited. In this study, we found that vitamin C induced miRNA expression, particularly of ESC-specific miRNAs. Moreover, vitamin C maintained the miRNA expression of the Dlk1-Dio3 imprinting region. The miRNAs in this region contain identical seed sequences, which target a class of genes, including Kdm6b, Klf13, and Sox6, and are mainly related to cell differentiation and development. These genes were significantly downregulated by vitamin C. Notably, miR-143 promoted self-renewal of mouse ESCs and suppressed expression of the de novo methyltransferase gene Dnmt3a. Knockdown of miR-143 by use of its inhibitor counteracted the vitamin C-induced reduction in Dnmt3a expression, showing that vitamin C repressed Dnmt3a expression via miR-143. Vitamin C also promoted DNA demethylation, including of pluripotency gene promoters (Tbx3, Tcl1, and Esrrb) and ESC-specific miRNA promoters (miR-290-295 and miR-17-92 clusters), and DNA hydroxymethylation, including of the intergenic differentially methylated region of the Dlk1-Dio3 region. These results strongly suggested that vitamin C promoted widespread DNA demethylation in gene promoters by modulating epigenetic modifiers, including Dnmt3a, which activated pluripotency genes and ESC-specific miRNAs. Then, differentiation and development genes were repressed by ESC-enriched miRNAs, which maintained the stem cell state.


Assuntos
Ácido Ascórbico/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , MicroRNAs/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Células-Tronco Pluripotentes/metabolismo
14.
PLoS One ; 9(7): e103724, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078608

RESUMO

ES cells can propagate indefinitely, maintain self-renewal, and differentiate into almost any cell type of the body. These properties make them valuable in the research of embryonic development, regenerative medicine, and organ transplantation. MicroRNAs (miRNAs) are considered to have essential functions in the maintenance and differentiation of embryonic stem cells (ES cells). It was reported that, strong external stimuli, such as a transient low-pH and hypoxia stress, were conducive to the formation of induced pluripotent stem cells (iPS cells). AICA ribonucleotide (AICAR) is an AMP-activated protein kinase activator, which can let cells in the state of energy stress. We have demonstrated that AICAR can maintain the pluripotency of J1 mouse ES cells through modulating protein expression in our previous research, but its effects on ES cell miRNA expression remain unknown. In this study, we conducted small RNA high-throughput sequencing to investigate AICAR influence on J1 mouse ES cells by comparing the miRNA expression patterns of the AICAR-treated cells and those without treatment. The result showed that AICAR can significantly modulate the expression of multiple miRNAs, including those have crucial functions in ES cell development. Some differentially expressed miRNAs were selected and confirmed by real-time PCR. For the differently expressed miRNAs identified, further study was conducted regarding the pluripotency and differentiation associated miRNAs with their targets. Moreover, miR-134 was significantly down-regulated after AICAR treatment, and this was suggested to be directly associated with the up-regulated pluripotency markers, Nanog and Sox2. Lastly, Myc was significantly down-regulated after AICAR treatment; therefore, we predicted miRNAs that may target Myc and identified that AICAR induced up-regulation of miR-34a, 34b, and 34c can repress Myc expression in J1 mouse ES cells. Taken together, our study provide a new mechanism for AICAR in ES cells pluripotency maintenance and give insight for its usage in iPS cells generation.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Ativadores de Enzimas/farmacologia , MicroRNAs/metabolismo , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular , Reprogramação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Análise de Sequência de RNA , Regulação para Cima
15.
Cell Signal ; 26(10): 2107-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24949833

RESUMO

SB431542 (SB) is an established small molecular inhibitor that specifically binds to the ATP binding domains of the activin receptor-like kinase receptors, ALK5, ALK4 and ALK7, and thus specifically inhibits Smad2/3 activation and blocks TGF-ß signal transduction. SB maintains the undifferentiated state of mouse embryonic stem cells. However, the way of SB in maintaining the undifferentiated state of mouse embryonic stem cells remains unclear. Considering that SB could not maintain embryonic stem cells pluripotency when leukemia inhibitory factor was withdrawn, we sought to identify the mechanism of SB on pluripotent maintenance. Transcripts regulated by SB, including message RNAs and small non-coding RNAs were examined through microarray and deep-sequence experiments. After examination, Western blot analysis, and quantitative real-time PCR verification, we found that SB regulated the transcript expressions related to self-renewal and differentiation. SB mainly functioned by inhibiting differentiation. The key pluripotent factors expression were not significantly affected by SB, and intrinsic differentiation-related transcripts including fibroblast growth factor family members, were significantly down-regulated by SB. Moreover, SB could partially inhibit the retinoic acid response to neuronal differentiation of mouse embryonic stem cells.


Assuntos
Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dioxóis/farmacologia , Animais , Linhagem Celular , Dimetil Sulfóxido/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fator Inibidor de Leucemia/farmacologia , Camundongos , MicroRNAs/metabolismo , Fosforilação , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Cell Physiol Biochem ; 33(2): 501-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24556957

RESUMO

BACKGROUND: Colony morphology of embryonic stem (ES) cells contributes to the maintenance of undifferentiated ES cells. Small molecule 3,4-dihydropy-rimido[4,5-d]pyrimidine (SC1), an inhibitor of ERK1- and RasGAP-dependent signaling pathways, can maintain the compact colony morphology of ES cells. However, information on the influence of SC1 on cell morphological change remains lacking. METHODS: In this study, mouse ES cells J1 and embryonic carcinoma (EC) cells F9 were cultured in SC1-containing medium to determine the effect of SC1 on cell morphology. RESULTS: SC1 promotes a more compact morphology of J1 mouse ES cells and induces colony growth of F9 EC cells. Furthermore, the cell adhesion protein E-cadherin is a downstream target of SC1, and E-cadherin is critical for SC1-mediated colony growth of F9 EC cells. CONCLUSIONS: SC1 maintains and induces compact colony morphology of pluripotent cells, and its downstream target, E-cadherin, is involved in the colony phenotype of F9 EC cells. These results explored the potential role of SC1 in morphological change and gene expression in pluripotent cells.


Assuntos
Caderinas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Embrionárias de Células Germinativas/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Pluripotentes/patologia , Ensaio Tumoral de Célula-Tronco
17.
Stem Cells ; 32(1): 166-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23963652

RESUMO

Vitamin C (Vc), also known as ascorbic acid, is involved in many important metabolic and physiological reactions in the body. Here, we report that Vc enhances the expression of Nanog and inhibits retinoic acid-induced differentiation of embryonic stem cells. We investigated Vc regulation of Nanog through Janus kinase/signal transducer and activator of transcription pathway using cell signaling pathway profiling systems, and further confirmed by specific pathway inhibition. Using overexpression and knockdown strategies, we demonstrated that STAT2 is a new positive regulator of Nanog and is activated by phosphorylation following Vc treatment. In addition, site mutation analysis identified that STAT2 physically occupies the Nanog promoter, which was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assays. Taken together, our data suggest a role for Vc in Nanog regulation networks and reveal a novel role for STAT2 in regulating Nanog expression.


Assuntos
Ácido Ascórbico/farmacologia , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Proteínas de Homeodomínio/biossíntese , Janus Quinases/metabolismo , Fator de Transcrição STAT2/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco de Carcinoma Embrionário/citologia , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Proteína Homeobox Nanog , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Transfecção
18.
Exp Cell Res ; 319(17): 2684-99, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24021571

RESUMO

Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/ß-catenin pathway by stabilizing ß-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-ß, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , RNA Longo não Codificante/genética , Transcrição Gênica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteína Nodal/genética , Proteína Nodal/metabolismo , RNA Longo não Codificante/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
Cell Physiol Biochem ; 32(2): 459-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23988673

RESUMO

BACKGROUND/AIMS: [corrected] Embryonic stem cells (ES cells) have the capacity to propagate indefinitely, maintain pluripotency, and differentiate into any cell type under defined conditions. As a result, they are considered to be the best model system for research into early embryonic development. AICA ribonucleotide (AICAR) is an activator of AMP-activated protein kinase (AMPK) that is thought to affect ES cell function, but its role in ES cell fate decision is unclear. METHODS: In this study, we performed microarray analysis to investigate AICAR downstream targets and further understand its effect on ES cells. RESULTS: Our microarray data demonstrated that AICAR can significantly up-regulate pluripotency-associated genes and down-regulate differentiation-associated transcription factors. Although AICAR cannot maintain ES cell identity without LIF, it can antagonize the action of RA-induced differentiation. Using those differentially expressed genes identified, we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the Database for Annotation, Visualization and Integrated Discovery (DAVID) online system. AICAR was not only shown to influence the AMPK pathway, but also act on other signaling pathways such as BMP, MAPK and TGF-ß, to maintain the stemness of J1 ES cells. Furthermore, AICAR modulated ES cell epigenetic modification by altering the expression of epigenetic-associated proteins, including Dnmt3a, Dnmt3b, Smarca2, Mbd3, and Arid1a, or through regulating the transcription of long intervening non-coding RNA (lincRNA). CONCLUSION: Taken together, our work suggests that AICAR is capable of maintaining ES cell self-renewal and pluripotency, which could be useful in future medical treatment.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Células-Tronco Embrionárias/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Perfilação da Expressão Gênica , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
20.
Biochimie ; 95(11): 2107-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23954801

RESUMO

Vitamin C has recently received attention because of its ability to improve induced pluripotent stem cells (iPSCs) generation [1-3] and maintain a blastocyst-like state in ES cells [4]. However, the underlying mechanisms are not fully understood. In this study, we found that vitamin C maintained the morphology of mouse embryonic stem cell (mESC) colonies and inhibited mESC differentiation. Gene expression profiling revealed that the genes down-regulated by vitamin C were grouped in the regulation of differentiation and development, while most of the up-regulated genes were enriched in the regulation of transcription involving numerous pluripotency factors, which was further confirmed by real time quantitative PCR. For the key pluripotency factor Nanog, vitamin C increased its promoter activity and protein level. In addition, pathway screening indicated that vitamin C may affect various signaling pathways. Our study provides new insights into vitamin C-mediated pluripotency maintenance of mESCs.


Assuntos
Ácido Ascórbico/farmacologia , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/biossíntese , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Ácido Ascórbico/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Proteína Homeobox Nanog , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...