Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 31(6): 617-627, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404632

RESUMO

In many plants, the asymmetric division of the zygote sets up the apical-basal axis of the embryo. Unlike animals, plant zygotes are transcriptionally active, implying that plants have evolved specific mechanisms to control transcriptional activation of patterning genes in the zygote. In Arabidopsis, two pathways have been found to regulate zygote asymmetry: YODA (YDA) mitogen-activated protein kinase (MAPK) signaling, which is potentiated by sperm-delivered mRNA of the SHORT SUSPENSOR (SSP) membrane protein, and up-regulation of the patterning gene WOX8 by the WRKY2 transcription factor. How SSP/YDA signaling is transduced into the nucleus and how these pathways are integrated have remained elusive. Here we show that paternal SSP/YDA signaling directly phosphorylates WRKY2, which in turn leads to the up-regulation of WOX8 transcription in the zygote. We further discovered the transcription factors HOMEODOMAIN GLABROUS11/12 (HDG11/12) as maternal regulators of zygote asymmetry that also directly regulate WOX8 transcription. Our results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Transcrição Gênica , Zigoto/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Sistema de Sinalização das MAP Quinases , Herança Materna , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Herança Paterna , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/enzimologia
2.
Dev Cell ; 33(5): 576-88, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26028217

RESUMO

Stem cells in plants and animals are maintained pluripotent by signals from adjacent niche cells. In plants, WUSCHEL HOMEOBOX (WOX) transcription factors are central regulators of stem cell maintenance in different meristem types, yet their molecular mode of action has remained elusive. Here we show that in the Arabidopsis root meristem, the WOX5 protein moves from the root niche organizer, the quiescent center, into the columella stem cells, where it directly represses the transcription factor gene CDF4. This creates a gradient of CDF4 transcription, which promotes differentiation opposite to the WOX5 gradient, allowing stem cell daughter cells to exit the stem cell state. We further show that WOX5 represses CDF4 transcription by recruiting TPL/TPR co-repressors and the histone deacetylase HDA19, which consequently induces histone deacetylation at the CDF4 regulatory region. Our results show that chromatin-mediated repression of differentiation programs is a common strategy in plant and animal stem cell niches.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciação Celular , Cromatina/genética , Proteínas de Homeodomínio/metabolismo , Meristema/citologia , Raízes de Plantas/citologia , Células-Tronco/citologia , Acetilação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Hibridização In Situ , Meristema/metabolismo , Análise em Microsséries , Microscopia Confocal , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Nicho de Células-Tronco , Células-Tronco/metabolismo
3.
Curr Biol ; 24(16): 1939-44, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25127220

RESUMO

In Arabidopsis, stem cells maintain the provision of new cells for root growth. They surround a group of slowly dividing cells named the quiescent center (QC), and, together, they form the stem cell niche (SCN). The QC acts as the signaling center of the SCN, repressing differentiation of the surrounding stem cells and providing a pool of cells able to replace damaged stem cells. Maintenance of the stem cells depends on the transcription factor WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the QC. However, the molecular mechanisms by which WOX5 promotes stem cell fate and whether WOX5 regulates proliferation of the QC are unknown. Here, we reveal a new role for WOX5 in restraining cell division in the cells of the QC, thereby establishing quiescence. In contrast, WOX5 and CYCD3;3/CYCD1;1 both promote cell proliferation in the nascent columella. The additional QC divisions occurring in wox5 mutants are suppressed in mutant combinations with the D type cyclins CYCD3;3 and CYCD1;1. Moreover, ectopic expression of CYCD3;3 in the QC is sufficient to induce cell division in the QC. WOX5 thus suppresses QC divisions that are otherwise promoted by CYCD3;3 and CYCD1;1, in part by interacting with the CYCD3;3 promoter to repress CYCD3;3 expression in the QC. Therefore, we propose a specific role for WOX5 in initiating and maintaining quiescence of the QC by excluding CYCD activity from the QC.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Ciclina D3/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Divisão Celular , Ciclina D3/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Nicho de Células-Tronco , Células-Tronco/citologia
4.
Annu Rev Plant Biol ; 63: 615-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22404469

RESUMO

Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Proteínas de Arabidopsis/metabolismo , Comunicação Celular , Diferenciação Celular , Genes de Plantas/fisiologia , Meristema/citologia , Meristema/metabolismo , Modelos Biológicos , Caules de Planta/citologia , Caules de Planta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regeneração , Transdução de Sinais , Transcrição Gênica
5.
Plant Cell ; 24(2): 589-607, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22327741

RESUMO

Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of ß-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane-located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Celulose/biossíntese , Quitinases/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Quitinases/genética , Glicosídeo Hidrolases/genética , Microfibrilas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Polissacarídeos/metabolismo
6.
Plant Cell ; 23(3): 1047-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21441433

RESUMO

The chromatin modifying Polycomb group (PcG) and trithorax group (trxG) proteins are central regulators of cell identity that maintain a tightly controlled balance between cell proliferation and cell differentiation. The opposing activities of PcG and trxG proteins ensure the correct expression of specific transcriptional programs at defined developmental stages. Here, we report that the chromatin remodeling factor PICKLE (PKL) and the PcG protein CURLY LEAF (CLF) antagonistically determine root meristem activity. Whereas loss of PKL function caused a decrease in meristematic activity, loss of CLF function increased meristematic activity. Alterations of meristematic activity in pkl and clf mutants were not connected with changes in auxin concentration but correlated with decreased or increased expression of root stem cell and meristem marker genes, respectively. Root stem cell and meristem marker genes are modified by the PcG-mediated trimethylation of histone H3 on lysine 27 (H3K27me3). Decreased expression levels of root stem cell and meristem marker genes in pkl correlated with increased levels of H3K27me3, indicating that root meristem activity is largely controlled by the antagonistic activity of PcG proteins and PKL.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodomínio/metabolismo , Meristema/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Diferenciação Celular , Divisão Celular , Montagem e Desmontagem da Cromatina , DNA Helicases , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Meristema/citologia , Meristema/metabolismo , Metilação , Mutação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas do Grupo Polycomb
7.
Methods Mol Biol ; 655: 433-43, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20734278

RESUMO

DNA methylation is a prominent epigenetic mark and extensively found within plant genomes. It has two major roles- first, defending the genome against invasive DNA and second, regulation of gene expression. Since the first report of 5-methylcytosine found in wheat germ, many improvements in detection of methylated cytosine residues have been made and genome-wide methylation maps for Arabidopsis thaliana are now available. The development of fast, reproducible, and single-base pair resolving detection methods for DNA methylation at defined loci advanced our understanding of the establishment and maintenance of DNA methylation patterns. Bisulphite conversion of unmethylated cytosine residues followed by detection methods such as sequencing of distinct loci has become accepted as the gold standard for detecting 5-methylcytosines. Treatment of single-stranded DNA with bisulphite under acidic conditions leads to the conversion of cytosine residues to uracil whereas 5-methylcytosine is less sensitive and remains unchanged. Here, a detailed protocol for bisulphite conversion, primer design, and optimization of PCR conditions is given. Specific requirements for plant DNA are discussed.


Assuntos
Metilação de DNA , DNA de Plantas/metabolismo , Plantas/genética , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Sulfitos/metabolismo , 5-Metilcitosina/metabolismo , Sequência de Bases , Citosina/metabolismo , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/isolamento & purificação , DNA de Cadeia Simples/metabolismo , Epigenômica/métodos , Genoma de Planta , Plantas/metabolismo , Uracila/metabolismo
8.
Epigenetics ; 5(1): 20-3, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20083900

RESUMO

Cellular identity is maintained by epigenetic processes that prevent changes of cell-type specific transcriptional programs. Polycomb group (PcG) proteins are evolutionary conserved key players of cellular identity that repress central developmental regulators by modifying chromatin structure. PcG-mediated repression is antagonized by trithorax group (trxG) proteins that prevent inappropriate repression by PcG proteins. The molecular basis for this antagonistic activity is unclear. So far, only few chromatin regulatory proteins have been associated with trxG function in Arabidopsis. Recent work revealed that ATP-dependent chromatin remodeling factors of the Chromodomain-Helicase-DNA-binding (CHD) subfamily have trxG-like functions in Arabidopsis. Here we will discuss the implications of these findings that point towards an evolutionary conservation of PcG/trxG mediated gene regulation in higher eukaryotes.


Assuntos
Cromatina/química , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Regulação da Expressão Gênica , Proteínas Repressoras/genética , Trifosfato de Adenosina/metabolismo , Animais , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Humanos , Modelos Biológicos , Mutação , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Plantas/metabolismo , Proteínas do Grupo Polycomb , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo
9.
PLoS Genet ; 5(8): e1000605, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19680533

RESUMO

Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG) and trithorax group (trxG) proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA-binding domain CHD3 proteins PICKLE (PKL) and PICKLE RELATED2 (PKR2) have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3). Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote cell differentiation by suppressing embryonic development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Linhagem da Célula , DNA Helicases , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas do Grupo Polycomb , Ligação Proteica , Proteínas Repressoras/genética , Transativadores/genética
10.
PLoS One ; 4(4): e5335, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19399177

RESUMO

Polycomb group (PcG) proteins are essential to maintain gene expression patterns during development. Transcriptional repression by PcG proteins involves trimethylation of H3K27 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2) in animals and plants. PRC1 binds to H3K27me3 and is required for transcriptional repression in animals, but in plants PRC1-like activities have remained elusive. One candidate protein that could be involved in PRC1-like functions in plants is LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), because LHP1 associates with genes marked by H3K27me3 in vivo and has a chromodomain that binds H3K27me3 in vitro. Here, we show that disruption of the chromodomain of Arabidopsis thaliana LHP1 abolishes H3K27me3 recognition, releases gene silencing and causes similar phenotypic alterations as transcriptional lhp1 null mutants. Therefore, binding to H3K27me3 is essential for LHP1 protein function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA de Plantas/genética , Inativação Gênica , Genes de Plantas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Plantas Geneticamente Modificadas , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...