Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nat Commun ; 13(1): 4689, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948546

RESUMO

CDK4/6 inhibitors (CDK4/6i) and oncolytic viruses are promising therapeutic agents for the treatment of various cancers. As single agents, CDK4/6 inhibitors that are approved for the treatment of breast cancer in combination with endocrine therapy cause G1 cell cycle arrest, whereas adenoviruses induce progression into S-phase in infected cells as an integral part of the their life cycle. Both CDK4/6 inhibitors and adenovirus replication target the Retinoblastoma protein albeit for different purposes. Here we show that in combination CDK4/6 inhibitors potentiate the anti-tumor effect of the oncolytic adenovirus XVir-N-31 in bladder cancer and murine Ewing sarcoma xenograft models. This increase in oncolytic potency correlates with an increase in virus-producing cancer cells, enhanced viral genome replication, particle formation and consequently cancer cell killing. The molecular mechanism that regulates this response is fundamentally based on the reduction of Retinoblastoma protein expression levels by CDK4/6 inhibitors.


Assuntos
Infecções por Adenoviridae , Fatores de Transcrição E2F/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias da Retina , Retinoblastoma , Adenoviridae/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Humanos , Camundongos , Vírus Oncolíticos/metabolismo , Retinoblastoma/genética , Retinoblastoma/terapia , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Replicação Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Microbiol ; 23(12): e13399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34729894

RESUMO

Hepatitis B virus (HBV) infection is a major health threat causing 880,000 deaths each year. Available therapies control viral replication but do not cure HBV, leaving patients at risk to develop hepatocellular carcinoma. Here, we show that HBV envelope proteins (HBs)-besides their integration into endosomal membranes-become embedded in the plasma membrane where they can be targeted by redirected T-cells. HBs was detected on the surface of HBV-infected cells, in livers of mice replicating HBV and in HBV-induced hepatocellular carcinoma. Staining with HBs-specific recombinant antibody MoMab recognising a conformational epitope indicated that membrane-associated HBs remains correctly folded in HBV-replicating cells in cell culture and in livers of HBV-transgenic mice in vivo. MoMab coated onto superparamagnetic iron oxide nanoparticles allowed to detect membrane-associated HBs after HBV infection by electron microscopy in distinct stretches of the hepatocyte plasma membrane. Last but not least, we demonstrate that HBs located on the cell surface allow therapeutic targeting of HBV-positive cells by T-cells either engrafted with a chimeric antigen receptor or redirected by bispecific, T-cell engager antibodies. TAKE AWAYS: HBs become translocated to the plasma membrane. Novel, recombinant antibody confirmed proper conformation of HBs on the membrane. HBs provide an interesting target by T-cell-based, potentially curative therapies.


Assuntos
Antígenos de Superfície da Hepatite B , Hepatite B , Animais , Membrana Celular , Hepatite B/terapia , Vírus da Hepatite B , Humanos , Camundongos , Proteínas do Envelope Viral
3.
Cancer Res ; 81(23): 5862-5875, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666994

RESUMO

Asymptomatic anthracosis is the accumulation of black carbon particles in adult human lungs. It is a common occurrence, but the pathophysiologic significance of anthracosis is debatable. Using in situ high mass resolution matrix-assisted laser desorption/ionization (MALDI) fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging analysis, we discovered noxious carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAH), tobacco-specific nitrosamines, or aromatic amines, in a series of 330 patients with lung cancer in highly variable and unique patterns. The characteristic nature of carbon-bound exogenous compounds had a strong association with patient outcome, tumor progression, the tumor immune microenvironment, programmed death-ligand 1 (PD-L1) expression, and DNA damage. Spatial correlation network analyses revealed substantial differences in the metabolome of tumor cells compared with tumor stroma depending on carbon-bound exogenous compounds. Overall, the bioactive pool of exogenous compounds is associated with several changes in lung cancer pathophysiology and correlates with patient outcome. Given the high prevalence of anthracosis in the lungs of adult humans, future work should investigate the role of carbon-bound exogenous compounds in lung carcinogenesis and lung cancer therapy. SIGNIFICANCE: This study identifies a bioactive pool of carbon-bound exogenous compounds in patient tissues associated with several tumor biological features, contributing to an improved understanding of drivers of lung cancer pathophysiology.


Assuntos
Carcinoma de Células Escamosas/patologia , Fibrose Pulmonar Idiopática/patologia , Neoplasias Pulmonares/patologia , Metaboloma , Nitrosaminas/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Microambiente Tumoral , Carcinogênese , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/metabolismo , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Espectrometria de Massas , Estudos Retrospectivos , Uso de Tabaco
4.
Photoacoustics ; 22: 100263, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948433

RESUMO

Contrast enhancement in optoacoustic (photoacoustic) imaging can be achieved with agents that exhibit high absorption cross-sections, high photostability, low quantum yield, low toxicity, and preferential bio-distribution and clearance profiles. Based on advantageous photophysical properties of croconaine dyes, we explored croconaine-based nanoparticles (CR780RGD-NPs) as highly efficient contrast agents for targeted optoacoustic imaging of challenging preclinical tumor targets. Initial characterization of the CR780 dye was followed by modifications using polyethylene glycol and the cancer-targeting c(RGDyC) peptide, resulting in self-assembled ultrasmall particles with long circulation time and active tumor targeting. Preferential bio-distribution was demonstrated in orthotopic mouse brain tumor models by multispectral optoacoustic tomography (MSOT) imaging and histological analysis. Our findings showcase particle accumulation in brain tumors with sustainable strong optoacoustic signals and minimal toxic side effects. This work points to CR780RGD-NPs as a promising optoacoustic contrast agent for potential use in the diagnosis and image-guided resection of brain tumors.

5.
Sci Rep ; 10(1): 14461, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879402

RESUMO

Light sheet fluorescence microscopy (LSFM) of optically cleared biological samples represents a powerful tool to analyze the 3-dimensional morphology of tissues and organs. Multimodal combinations of LSFM with additional analyses of the identical sample help to limit the consumption of restricted specimen and reduce inter-sample variation. Here, we demonstrate the proof-of-concept that LSFM of cleared brain tissue samples can be combined with Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) for detection and quantification of proteins. Samples of freshly dissected murine brain and of archived formalin-fixed paraffin-embedded (FFPE) human brain tissue were cleared (3DISCO). Tissue regions of interest were defined by LSFM and excised, (re)-embedded in paraffin, and sectioned. Mouse sections were coated with sinapinic acid matrix. Human brain sections were pre-digested with trypsin and coated with α-cyano-4-hydroxycinnamic acid matrix. Subsequently, sections were subjected to MALDI-time-of-flight (TOF)-MSI in mass ranges between 0.8 to 4 kDa (human tissue sections), or 2.5-25 kDa (mouse tissue sections) with a lateral resolution of 50 µm. Protein- and peptide-identities corresponding to acquired MALDI-MSI spectra were confirmed by parallel liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The spatial abundance- and intensity-patterns of established marker proteins detected by MALDI-MSI were also confirmed by immunohistochemistry.


Assuntos
Encéfalo/ultraestrutura , Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/efeitos dos fármacos , Formaldeído/química , Humanos , Imuno-Histoquímica , Camundongos , Inclusão em Parafina , Peptídeos/química , Proteínas/química , Fixação de Tecidos , Tripsina/química
6.
Nat Commun ; 11(1): 3068, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555155

RESUMO

Surgical adhesions are bands of scar tissues that abnormally conjoin organ surfaces. Adhesions are a major cause of post-operative and dialysis-related complications, yet their patho-mechanism remains elusive, and prevention agents in clinical trials have thus far failed to achieve efficacy. Here, we uncover the adhesion initiation mechanism by coating beads with human mesothelial cells that normally line organ surfaces, and viewing them under adhesion stimuli. We document expansive membrane protrusions from mesothelia that tether beads with massive accompanying adherence forces. Membrane protrusions precede matrix deposition, and can transmit adhesion stimuli to healthy surfaces. We identify cytoskeletal effectors and calcium signaling as molecular triggers that initiate surgical adhesions. A single, localized dose targeting these early germinal events completely prevented adhesions in a preclinical mouse model, and in human assays. Our findings classifies the adhesion pathology as originating from mesothelial membrane bridges and offer a radically new therapeutic approach to treat adhesions.


Assuntos
Cálcio/química , Epitélio/metabolismo , Aderências Teciduais/metabolismo , Animais , Sinalização do Cálcio , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Biologia Computacional , Citoesqueleto/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias , Análise de Componente Principal , RNA Interferente Pequeno/metabolismo , Análise de Célula Única
7.
Chembiochem ; 21(17): 2495-2502, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32291951

RESUMO

Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the ß-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aß-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aß(1-40) fibrillar aggregates. The same Aß(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aß tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting ß-sheets ß1 and ß2 in Aß fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.


Assuntos
Doença de Alzheimer/diagnóstico , Amiloide/química , Compostos de Anilina/química , Corantes Fluorescentes/química , Ressonância Magnética Nuclear Biomolecular , Tomografia por Emissão de Pósitrons , Tiazóis/química , Amiloide/metabolismo , Sítios de Ligação , Isótopos de Carbono , Estrutura Molecular
8.
Sci Rep ; 10(1): 79, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919465

RESUMO

Molecular imaging of atherosclerosis by Magnetic Resonance Imaging (MRI) has been impaired by a lack of validation of the specific substrate responsible for the molecular imaging signal. We therefore aimed to investigate the additive value of mass spectrometry imaging (MSI) of atherosclerosis-affine Gadofluorine P for molecular MRI of atherosclerotic plaques. Atherosclerotic Ldlr-/- mice were investigated by high-field MRI (7 T) at different time points following injection of atherosclerosis-affine Gadofluorine P as well as at different stages of atherosclerosis formation (4, 8, 16 and 20 weeks of HFD). At each imaging time point mice were immediately sacrificed after imaging and aortas were excised for mass spectrometry imaging: Matrix Assisted Laser Desorption Ionization (MALDI) Imaging and Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) imaging. Mass spectrometry imaging allowed to visualize the localization and measure the concentration of the MR imaging probe Gadofluorine P in plaque tissue ex vivo with high spatial resolution and thus adds novel and more target specific information to molecular MR imaging of atherosclerosis.


Assuntos
Aterosclerose/patologia , Meios de Contraste/metabolismo , Complexos de Coordenação/metabolismo , Fluorocarbonos/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Receptores de LDL/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Aterosclerose/metabolismo , Feminino , Camundongos , Camundongos Knockout
9.
J Cachexia Sarcopenia Muscle ; 11(1): 226-240, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31965747

RESUMO

BACKGROUND: Cachexia is the direct cause of at least 20% of cancer-associated deaths. Muscle wasting in skeletal muscle results in weakness, immobility, and death secondary to impaired respiratory muscle function. Muscle proteins are massively degraded in cachexia; nevertheless, the molecular mechanisms related to this process are poorly understood. Previous studies have reported conflicting results regarding the amino acid abundances in cachectic skeletal muscle tissues. There is a clear need to identify the molecular processes of muscle metabolism in the context of cachexia, especially how different types of molecules are involved in the muscle wasting process. METHODS: New in situ -omics techniques were used to produce a more comprehensive picture of amino acid metabolism in cachectic muscles by determining the quantities of amino acids, proteins, and cellular metabolites. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging, we determined the in situ concentrations of amino acids and proteins, as well as energy and other cellular metabolites, in skeletal muscle tissues from genetic mouse cancer models (n = 21) and from patients with cancer (n = 6). Combined results from three individual MALDI mass spectrometry imaging methods were obtained and interpreted. Immunohistochemistry staining for mitochondrial proteins and myosin heavy chain expression, digital image analysis, and transmission electron microscopy complemented the MALDI mass spectrometry imaging results. RESULTS: Metabolic derangements in cachectic mouse muscle tissues were detected, with significantly increased quantities of lysine, arginine, proline, and tyrosine (P = 0.0037, P = 0.0048, P = 0.0430, and P = 0.0357, respectively) and significantly reduced quantities of glutamate and aspartate (P = 0.0008 and P = 0.0124). Human skeletal muscle tissues revealed similar tendencies. A majority of altered amino acids were released by the breakdown of proteins involved in oxidative phosphorylation. Decreased energy charge was observed in cachectic muscle tissues (P = 0.0101), which was related to the breakdown of specific proteins. Additionally, expression of the cationic amino acid transporter CAT1 was significantly decreased in the mitochondria of cachectic mouse muscles (P = 0.0133); this decrease may play an important role in the alterations of cationic amino acid metabolism and decreased quantity of glutamate observed in cachexia. CONCLUSIONS: Our results suggest that mitochondrial dysfunction has a substantial influence on amino acid metabolism in cachectic skeletal muscles, which appears to be triggered by diminished CAT1 expression, as well as the degradation of mitochondrial proteins. These findings provide new insights into the pathobiochemistry of muscle wasting.


Assuntos
Aminoácidos/metabolismo , Caquexia/fisiopatologia , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/fisiopatologia , Feminino , Humanos , Lactente , Masculino
10.
Haematologica ; 105(4): 937-950, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31248967

RESUMO

Glutathione peroxidase 4 (GPX4) is unique as it is the only enzyme that can prevent detrimental lipid peroxidation in vivo by reducing lipid peroxides to the respective alcohols thereby stabilizing oxidation products of unsaturated fatty acids. During reticulocyte maturation, lipid peroxidation mediated by 15-lipoxygenase in humans and rabbits and by 12/15-lipoxygenase (ALOX15) in mice was considered the initiating event for the elimination of mitochondria but is now known to occur through mitophagy. Yet, genetic ablation of the Alox15 gene in mice failed to provide evidence for this hypothesis. We designed a different genetic approach to tackle this open conundrum. Since either other lipoxygenases or non-enzymatic autooxidative mechanisms may compensate for the loss of Alox15, we asked whether ablation of Gpx4 in the hematopoietic system would result in the perturbation of reticulocyte maturation. Quantitative assessment of erythropoiesis indices in the blood, bone marrow (BM) and spleen of chimeric mice with Gpx4 ablated in hematopoietic cells revealed anemia with an increase in the fraction of erythroid precursor cells and reticulocytes. Additional dietary vitamin E depletion strongly aggravated the anemic phenotype. Despite strong extramedullary erythropoiesis reticulocytes failed to mature and accumulated large autophagosomes with engulfed mitochondria. Gpx4-deficiency in hematopoietic cells led to systemic hepatic iron overload and simultaneous severe iron demand in the erythroid system. Despite extremely high erythropoietin and erythroferrone levels in the plasma, hepcidin expression remained unchanged. Conclusively, perturbed reticulocyte maturation in response to Gpx4 loss in hematopoietic cells thus causes ineffective erythropoiesis, a phenotype partially masked by dietary vitamin E supplementation.


Assuntos
Eritropoese , Ferro , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Reticulócitos , Vitamina E , Animais , Homeostase , Camundongos , Coelhos
11.
Nature ; 576(7786): 287-292, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776510

RESUMO

Mammals form scars to quickly seal wounds and ensure survival by an incompletely understood mechanism1-5. Here we show that skin scars originate from prefabricated matrix in the subcutaneous fascia. Fate mapping and live imaging revealed that fascia fibroblasts rise to the skin surface after wounding, dragging their surrounding extracellular jelly-like matrix, including embedded blood vessels, macrophages and peripheral nerves, to form the provisional matrix. Genetic ablation of fascia fibroblasts prevented matrix from homing into wounds and resulted in defective scars, whereas placing an impermeable film beneath the skin-preventing fascia fibroblasts from migrating upwards-led to chronic open wounds. Thus, fascia contains a specialized prefabricated kit of sentry fibroblasts, embedded within a movable sealant, that preassemble together diverse cell types and matrix components needed to heal wounds. Our findings suggest that chronic and excessive skin wounds may be attributed to the mobility of the fascia matrix.


Assuntos
Fáscia/patologia , Cicatrização , Animais , Biomarcadores/análise , Movimento Celular , Fáscia/transplante , Fibroblastos , Queloide , Camundongos Endogâmicos C57BL
12.
PLoS One ; 14(9): e0221454, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31483811

RESUMO

Side effects caused by radiation are a limiting factor to the amount of dose that can be applied to a tumor volume. A novel method to reduce side effects in radiotherapy is the use of spatial fractionation, in which a pattern of sub-millimeter beams (minibeams) is applied to spare healthy tissue. In order to determine the skin reactions in dependence of single beam sizes, which are relevant for spatially fractionated radiotherapy approaches, single pencil beams of submillimeter to 6 millimeter size were applied in BALB/c mice ears at a Small Animal Radiation Research Platform (SARRP) with a plateau dose of 60 Gy. Radiation toxicities in the ears were observed for 25 days after irradiation. Severe radiation responses were found for beams ≥ 3 mm diameter. The larger the beam diameter the stronger the observed reactions. No ear swelling and barely reddening or desquamation were found for the smallest beam sizes (0.5 and 1 mm). The findings were confirmed by histological sections. Submillimeter beams are preferred in minibeam therapy to obtain optimized tissue sparing. The gradual increase of radiation toxicity with beam size shows that also larger beams are capable of healthy tissue sparing in spatial fractionation.


Assuntos
Orelha/efeitos da radiação , Raios gama/efeitos adversos , Pele/patologia , Animais , Orelha/fisiologia , Eritema/etiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Dosímetros de Radiação , Pele/metabolismo , Pele/efeitos da radiação
13.
Clin Chem ; 65(10): 1276-1286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31492715

RESUMO

BACKGROUND: Adrenocortical carcinoma (ACC) is a rare tumor with variable prognosis even within the same tumor stage. Cancer-related sex hormones and their sulfated metabolites in body fluids can be used as tumor markers. The role of steroid sulfation in ACC has not yet been studied. MALDI mass spectrometry imaging (MALDI-MSI) is a novel tool for tissue-based chemical phenotyping. METHODS: We performed phenotyping of formalin-fixed, paraffin-embedded tissue samples from 72 ACC by MALDI-MSI at a metabolomics level. RESULTS: Tumoral steroid hormone metabolites-estradiol sulfate [hazard ratio (HR) 0.26; 95% CI, 0.10-0.69; P = 0.005] and estrone 3-sulfate (HR 0.22; 95% CI, 0.07-0.63; P = 0.003)-were significantly associated with prognosis in Kaplan-Meier analyses and after multivariable adjustment for age, tumor stage, and sex (HR 0.29; 95% CI, 0.11-0.79; P = 0.015 and HR 0.30; 95% CI, 0.10-0.91; P = 0.033, respectively). Expression of sulfotransferase SULT2A1 was associated with prognosis to a similar extent and was validated to be a prognostic factor in two published data sets. We discovered the presence of estradiol-17ß 3,17-disulfate (E2S2) in a subset of tumors with particularly poor overall survival. Electron microscopy revealed novel membrane-delimited organelles in only these tumors. By applying cluster analyses of metabolomic data, 3 sulfation-related phenotypes exhibited specific metabolic features unrelated to steroid metabolism. CONCLUSIONS: MALDI-MSI provides novel insights into the pathophysiology of ACC. Steroid hormone sulfation may be used for prognostication and treatment stratification. Sulfation-related metabolic reprogramming may be of relevance also in conditions beyond the rare ACC and can be directly investigated by the use of MALDI-MSI.


Assuntos
Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/mortalidade , Biomarcadores Tumorais/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esteroides/análise , Adolescente , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Criança , Estradiol/análogos & derivados , Estradiol/análise , Estradiol/metabolismo , Estrona/análogos & derivados , Estrona/análise , Estrona/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Esteroides/metabolismo , Sulfotransferases/metabolismo , Adulto Jovem
14.
ACS Nano ; 13(7): 8114-8123, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31194509

RESUMO

Multicolored gene reporters for light microscopy are indispensable for biomedical research, but equivalent genetic tools for electron microscopy (EM) are still rare despite the increasing importance of nanometer resolution for reverse engineering of molecular machinery and reliable mapping of cellular circuits. We here introduce the fully genetic encapsulin/cargo system of Quasibacillus thermotolerans (Qt), which in combination with the recently characterized encapsulin system from Myxococcus xanthus (Mx) enables multiplexed gene reporter imaging via conventional transmission electron microscopy (TEM) in mammalian cells. Cryo-electron reconstructions revealed that the Qt encapsulin shell self-assembles to nanospheres with T = 4 icosahedral symmetry and a diameter of ∼43 nm harboring two putative pore regions at the 5-fold and 3-fold axes. We also found that upon heterologous expression in mammalian cells, the native cargo is autotargeted to the inner surface of the shell and exhibits ferroxidase activity leading to efficient intraluminal iron biomineralization, which enhances cellular TEM contrast. We furthermore demonstrate that the two differently sized encapsulins of Qt and Mx do not intermix and can be robustly differentiated by conventional TEM via a deep learning classifier to enable automated multiplexed EM gene reporter imaging.


Assuntos
Bacillus/genética , Genes Reporter/genética , Ferro/química , Myxococcus xanthus/genética , Nanocompostos/química , Microscopia Eletrônica , Tamanho da Partícula , Propriedades de Superfície
15.
Sci Rep ; 9(1): 8492, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186476

RESUMO

Mitochondria are key for cellular metabolism and signalling processes during viral infection. We report a methodology to analyse mitochondrial properties at the single-organelle level during viral infection using a recombinant adenovirus coding for a mitochondrial tracer protein for tagging and detection by multispectral flow cytometry. Resolution at the level of tagged individual mitochondria revealed changes in mitochondrial size, membrane potential and displayed a fragile phenotype during viral infection of cells. Thus, single-organelle and multi-parameter resolution allows to explore altered energy metabolism and antiviral defence by tagged mitochondria selectively in virus-infected cells and will be instrumental to identify viral immune escape and to develop and monitor novel mitochondrial-targeted therapies.


Assuntos
Mitocôndrias Hepáticas/metabolismo , Viroses/metabolismo , Animais , Células HEK293 , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Humanos , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/ultraestrutura , Mitocôndrias Hepáticas/virologia , Tamanho das Organelas
16.
Nat Commun ; 10(1): 1114, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846699

RESUMO

Advances in genetic engineering have enabled the use of bacterial outer membrane vesicles (OMVs) to deliver vaccines, drugs and immunotherapy agents, as a strategy to circumvent biocompatibility and large-scale production issues associated with synthetic nanomaterials. We investigate bioengineered OMVs for contrast enhancement in optoacoustic (photoacoustic) imaging. We produce OMVs encapsulating biopolymer-melanin (OMVMel) using a bacterial strain expressing a tyrosinase transgene. Our results show that upon near-infrared light irradiation, OMVMel generates strong optoacoustic signals appropriate for imaging applications. In addition, we show that OMVMel builds up intense heat from the absorbed laser energy and mediates photothermal effects both in vitro and in vivo. Using multispectral optoacoustic tomography, we noninvasively monitor the spatio-temporal, tumour-associated OMVMel distribution in vivo. This work points to the use of bioengineered vesicles as potent alternatives to synthetic particles more commonly employed for optoacoustic imaging, with the potential to enable both image enhancement and photothermal applications.


Assuntos
Nanopartículas , Técnicas Fotoacústicas/métodos , Animais , Proteínas da Membrana Bacteriana Externa/química , Bioengenharia , Biopolímeros/química , Feminino , Temperatura Alta/uso terapêutico , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/terapia , Melaninas/química , Camundongos , Camundongos Nus , Nanopartículas/química , Nanotecnologia , Nanomedicina Teranóstica
17.
Gastroenterology ; 156(1): 203-217.e20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296435

RESUMO

BACKGROUND AND AIMS: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS: A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Neoplasias Pancreáticas/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/prevenção & controle , Carcinoma Ductal Pancreático/secundário , Catepsinas/genética , Catepsinas/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genes ras , Heterozigoto , Homozigoto , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Transdução de Sinais , Carga Tumoral , Células Tumorais Cultivadas
18.
Eur Respir J ; 52(3)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30072508

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal condition that reduces life expectancy and shows a limited response to available therapies. Pirfenidone has been approved for treatment of IPF, but little is known about the distinct metabolic changes that occur in the lung upon pirfenidone administration.Here, we performed a proof-of-concept study using high-resolution quantitative matrix-assisted laser desorption/ionisation Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI) to simultaneously detect, visualise and quantify in situ endogenous and exogenous metabolites in lungs of mice subjected to experimental fibrosis and human patients with IPF, and to assess the effect of pirfenidone treatment on metabolite levels.Metabolic pathway analysis and endogenous metabolite quantification revealed that pirfenidone treatment restores redox imbalance and glycolysis in IPF tissues, and downregulates ascorbate and aldarate metabolism, thereby likely contributing to in situ modulation of collagen processing. As such, we detected specific alterations in metabolite pathways in fibrosis and, importantly, metabolic recalibration following pirfenidone treatment.Together, these results highlight the suitability of high-resolution MALDI-FTICR-MSI for deciphering the therapeutic effects of pirfenidone and provide a preliminary analysis of the metabolic changes that occur during pirfenidone treatment in vivo These data may therefore contribute to improvement of currently available therapies for IPF.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Piridonas/metabolismo , Piridonas/farmacologia , Animais , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Estudo de Prova de Conceito , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição Tecidual
19.
Am J Respir Crit Care Med ; 198(12): 1527-1538, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30044642

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease characterized by lung epithelial cell injury, increased (myo)fibroblast activation, and extracellular matrix deposition. Extracellular vesicles (EVs) regulate intercellular communication by carrying a variety of signaling mediators, including WNT (wingless/integrated) proteins. The relevance of EVs in pulmonary fibrosis and their potential contribution to disease pathogenesis, however, remain unexplored.Objectives: To characterize EVs and study the role of EV-bound WNT signaling in IPF.Methods: We isolated EVs from BAL fluid (BALF) from experimental lung fibrosis as well as samples from IPF, non-IPF interstitial lung disease (ILD), non-ILD, and healthy volunteers from two independent cohorts. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Primary human lung fibroblasts (phLFs) were used for EV isolation and analyzed by metabolic activity assays, cell counting, quantitative PCR, and Western blotting upon WNT gain- and loss-of-function studies.Measurements and Main Results: We found increased EVs, particularly exosomes, in BALF from experimental lung fibrosis as well as from patients with IPF. WNT5A was secreted on EVs in lung fibrosis and induced by transforming growth factor-ß in primary human lung fibroblasts. The phLF-derived EVs induced phLF proliferation, which was attenuated by WNT5A silencing and antibody-mediated inhibition and required intact EV structure. Similarly, EVs from IPF BALF induced phLF proliferation, which was mediated by WNT5A.Conclusions: Increased EVs function as carriers for signaling mediators, such as WNT5A, in IPF and thus contribute to disease pathogenesis. Characterization of EV secretion and composition may lead to novel approaches to diagnose and develop treatments for pulmonary fibrosis.


Assuntos
Vesículas Extracelulares , Fibrose Pulmonar Idiopática/etiologia , Transdução de Sinais , Proteína Wnt-5a/fisiologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Heliyon ; 4(4): e00606, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29862367

RESUMO

BACKGROUND: Molecular MRI is becoming increasingly important for preclinical research. Validation of targeted gadolinium probes in tissue however has been cumbersome up to now. Novel methodology to assess gadolinium distribution in tissue after in vivo application is therefore needed. PURPOSE: To establish combined Magnetic Resonance Imaging (MRI) and Mass Spectrometry Imaging (MSI) for improved detection and quantification of Gadofluorine P deposition in scar formation and myocardial remodeling. MATERIALS AND METHODS: Animal studies were performed according to institutionally approved protocols. Myocardial infarction was induced by permanent ligation of the left ascending artery (LAD) in C57BL/6J mice. MRI was performed at 7T at 1 week and 6 weeks after myocardial infarction. Gadofluorine P was used for dynamic T1 mapping of extracellular matrix synthesis during myocardial healing and compared to Gd-DTPA. After in vivo imaging contrast agent concentration as well as distribution in tissue were validated and quantified by spatially resolved Matrix-Assisted Laser Desorption Ionization (MALDI) MSI and Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) imaging. RESULTS: Both Gadofluorine P enhancement as well as local tissue content in the myocardial scar were highest at 15 minutes post injection. R1 values increased from 1 to 6 weeks after MI (1.62 s-1 vs 2.68 s-1, p = 0.059) paralleled by an increase in Gadofluorine P concentration in the infarct from 0.019 mM at 1 week to 0.028 mM at 6 weeks (p = 0.048), whereas Gd-DTPA enhancement showed no differences (3.95 s-1 vs 3.47 s-1, p = 0.701). MALDI-MSI results were corroborated by elemental LA-ICP-MS of Gadolinium in healthy and infarcted myocardium. Histology confirmed increased extracellular matrix synthesis at 6 weeks compared to 1 week. CONCLUSION: Adding quantitative MSI to MR imaging enables a quantitative validation of Gadofluorine P distribution in the heart after MI for molecular imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...