Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 171(1): 103-119.e18, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938112

RESUMO

It is now established that Bcl11b specifies T cell fate. Here, we show that in developing T cells, the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (thymocyte differentiation factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single-loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how, during developmental progression and tumor suppression, non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Proteínas Repressoras/genética , Linfócitos T/citologia , Proteínas Supressoras de Tumor/genética , Animais , Fator de Ligação a CCCTC , Cromatina/metabolismo , Leucemia/genética , Região de Controle de Locus Gênico , Linfoma/genética , Camundongos , Lâmina Nuclear/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Timo/citologia , Timo/metabolismo , Transcrição Gênica
3.
Proc Natl Acad Sci U S A ; 110(19): 7784-9, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610419

RESUMO

Somatic hypermutation (SHM) requires not only the expression of activation-induced cytidine deaminase, but also transcription in the target regions. However, how transcription guides activation-induced cytidine deaminase in targeting SHM to the Ig genes is not fully understood. Here, we found that the "facilitates chromatin transcription" (FACT) complex promotes SHM by RNAi screening of transcription elongation factors. Furthermore, FACT and histone H3.3, a hallmark of transcription-coupled histone turnover, are enriched at the V(D)J region, 5' flanking sequence of the Sµ switch region and the light chain Jκ 5 segment region in the Ig loci. The regions with the most abundant deposition of FACT and H3.3 were also the most efficient targets of SHM. These results demonstrate the importance of histone-exchanging dynamics at the chromatin of SHM targets, especially in Ig genes.


Assuntos
Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/genética , Hipermutação Somática de Imunoglobulina , Fatores de Elongação da Transcrição/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Cinamatos/metabolismo , Citidina Desaminase/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Genes Reporter , Marcadores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Higromicina B/análogos & derivados , Higromicina B/metabolismo , Switching de Imunoglobulina , Imunoglobulinas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Análise de Sequência de DNA , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
4.
J Immunol ; 188(8): 3559-66, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22492685

RESUMO

An ortholog of activation-induced cytidine deaminase (AID) was, evolutionarily, the first enzyme to generate acquired immune diversity by catalyzing gene conversion and probably somatic hypermutation (SHM). AID began to mediate class switch recombination (CSR) only after the evolution of frogs. Recent studies revealed that the mechanisms for generating immune and genetic diversity share several critical features. Meiotic recombination, V(D)J recombination, CSR, and SHM all require H3K4 trimethyl histone modification to specify the target DNA. Genetic instability related to dinucleotide or triplet repeats depends on DNA cleavage by topoisomerase 1, which also initiates DNA cleavage in both SHM and CSR. These similarities suggest that AID hijacked the basic mechanism for genome instability when AID evolved in jawless fish. Thus, the risk of introducing genome instability into nonimmunoglobulin loci is unavoidable but tolerable compared with the advantage conferred on the host of being protected against pathogens by the enormous Ig diversification.


Assuntos
Imunidade Adaptativa , Citidina Desaminase , Variação Genética/imunologia , Genoma Humano/imunologia , Imunoglobulinas/imunologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Animais , Linfócitos B/imunologia , Evolução Biológica , Citidina Desaminase/genética , Citidina Desaminase/imunologia , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/imunologia , Conversão Gênica , Instabilidade Genômica/genética , Instabilidade Genômica/imunologia , Histonas/genética , Histonas/imunologia , Humanos , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Imunoglobulinas/genética , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Linfócitos T/imunologia , Recombinação V(D)J/genética , Recombinação V(D)J/imunologia
5.
Proc Natl Acad Sci U S A ; 107(51): 22190-5, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21139053

RESUMO

Ig class switch recombination (CSR) requires expression of activation-induced cytidine deaminase (AID) and transcription through target switch (S) regions. Here we show that knockdown of the histone chaperone facilitates chromatin transcription (FACT) completely inhibited S region cleavage and CSR in IgA-switch-inducible CH12F3-2A B cells. FACT knockdown did not reduce AID or S region transcripts but did decrease histone3 lysine4 trimethylation (H3K4me3) at both the Sµ and Sα regions. Because knockdown of FACT or H3K4 methyltransferase cofactors inhibited DNA cleavage in H3K4me3-depleted S regions, H3K4me3 may serve as a mark for recruiting CSR recombinase. These findings revealed an unexpected evolutionary conservation between CSR and meiotic recombination.


Assuntos
Linfócitos B/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Histonas/metabolismo , Switching de Imunoglobulina/fisiologia , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Cromatina/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/genética , Lisina/genética , Lisina/metabolismo , Meiose/fisiologia , Metilação , Camundongos , VDJ Recombinases/genética , VDJ Recombinases/metabolismo
6.
Genes Cells ; 15(9): 1003-13, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20695905

RESUMO

Recent estimates indicate that approximately 60% of human genes include alternative polyadenylation sites. Hence, control of alternative polyadenylation can have a great impact on gene expression and cellular function. Cleavage factor (CF) Im is a 3'-end processing factor that is essential for in vitro processing. CFIm purified from HeLa cells is associated with three polypeptides of 25, 59 and 68 kD, and it is generally thought to be a heterodimer composed of the 25-kD subunit and one of the larger subunits. Previously, we serendipitously discovered that knockdown of CFIm25 causes an upstream shift in the utilization of alternative polyadenylation sites. Here, we investigated whether this is because of an inherent property of the CFIm complex and, if so, what structural elements are important for its function. The major conclusions of this study are that (i) contrary to previous assumptions, CFIm forms stable heterotetramers through dimerization of CFIm25 and (ii) the CFIm complex per se is responsible for the control of alternative polyadenylation. (iii) However, the structurally related CFIm68 and CFIm59 are functionally redundant and (iv) CFIm68 appears to have a higher specific activity. Thus, this study establishes that CFIm not only plays a general role in 3'-end processing but also plays a regulatory role in poly(A) site selection.


Assuntos
Poli A/genética , Multimerização Proteica , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Processamento Alternativo , Animais , Sítios de Ligação/genética , Linhagem Celular , Expressão Gênica , Células HeLa , Humanos , Immunoblotting , Peso Molecular , Poliadenilação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Spodoptera , Fatores de Poliadenilação e Clivagem de mRNA/genética
7.
Int Immunol ; 22(4): 227-35, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20207715

RESUMO

Activation-induced cytidine deaminase (AID) is essential and sufficient to accomplish class-switch recombination and somatic hypermutation, which are two genetic events required for the generation of antibody-mediated memory responses. However, AID can also introduce genomic instability, giving rise to chromosomal translocation and/or mutations in proto-oncogenes. It is therefore important for cells to suppress AID expression unless B lymphocytes are stimulated by pathogens. The mechanisms for avoiding the accidental activation of AID and thereby avoiding genomic instability can be classified into three types: (i) transcriptional regulation, (ii) post-transcriptional regulation and (iii) target specificity. This review summarizes the recently elucidated comprehensive transcriptional regulation mechanisms of the AID gene and the post-transcriptional regulation that may be critical for preventing excess AID activity. Finally, we discuss why AID targets not only Igs but also other proto-oncogenes. AID targets many genes but it is not totally promiscuous and the criteria that specify its targets are unclear. A recent finding that a non-B DNA structure forms upon a decrease in topoisomerase 1 expression may explain this paradoxical target specificity determination. Evolution has chosen AID as a mutator of Ig genes because of its efficient DNA cleavage activity, even though its presence increases the risk of genomic instability. This is probably because immediate protection against pathogens is more critical for species survival than complete protection from the slower acting consequences of genomic instability, such as tumor formation.


Assuntos
Diversidade de Anticorpos/genética , Linfócitos B/imunologia , Citidina Desaminase/metabolismo , Instabilidade Genômica , Imunoglobulina G/imunologia , Animais , Citidina Desaminase/genética , Citidina Desaminase/imunologia , DNA Topoisomerases Tipo I/metabolismo , Elementos Facilitadores Genéticos , Inativação Gênica , Humanos , Imunoglobulina G/genética , Japão , Proto-Oncogenes/genética , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 106(52): 22375-80, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018730

RESUMO

To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.


Assuntos
Citidina Desaminase/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA/química , DNA/metabolismo , Switching de Imunoglobulina , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camptotecina/farmacologia , Linhagem Celular , Citidina Desaminase/deficiência , Citidina Desaminase/genética , DNA/genética , DNA Topoisomerases Tipo I/genética , Switching de Imunoglobulina/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Inibidores da Topoisomerase I
9.
Mol Cell Biol ; 26(16): 6094-104, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880520

RESUMO

Human 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) negatively regulate transcription elongation by RNA polymerase II (RNAPII) in vitro. However, the physiological roles of this negative regulation are not well understood. Here, by using a number of approaches to identify protein-DNA interactions in vivo, we show that DSIF- and NELF-mediated transcriptional pausing has a dual function in regulating immediate-early expression of the human junB gene. Before induction by interleukin-6, RNAPII, DSIF, and NELF accumulate in the promoter-proximal region of junB, mainly at around position +50 from the transcription initiation site. After induction, the association of these proteins with the promoter-proximal region continues whereas RNAPII and DSIF are also found in the downstream regions. Depletion of a subunit of NELF by RNA interference enhances the junB mRNA level both before and after induction, indicating that DSIF- and NELF-mediated pausing contributes to the negative regulation of junB expression, not only by inducing RNAPII pausing before induction but also by attenuating transcription after induction. These regulatory mechanisms appear to be conserved in other immediate-early genes as well.


Assuntos
Regulação da Expressão Gênica , Genes Precoces/genética , Genes jun/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células Cultivadas , Humanos , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Elongação da Transcrição
10.
Mol Cell Biol ; 24(14): 6298-310, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15226432

RESUMO

Intestinal epithelial cell-derived interleukin (IL)-7 functions as a pleiotropic and nonredundant cytokine in the human intestinal mucosa; however, the molecular basis of its production has remained totally unknown. We here showed that human intestinal epithelial cells both constitutively and when induced by gamma interferon (IFN-gamma) produced IL-7, while several other factors we tested had no effect. Transcriptional regulation via an IFN regulatory factor element (IRF-E) on the 5' flanking region, which lacks canonical core promoter sequences, was pivotal for both modes of IL-7 expression. IRF-1 and IRF-2, the latter of which is generally known as a transcriptional repressor, were shown to interact with IRF-E and transactivate IL-7 gene expression in an IFN-gamma-inducible and constitutive manner, respectively. Indeed, tetracycline-inducible expression experiments revealed that both of these IRF proteins up-regulated IL-7 protein production, and their exclusive roles were further confirmed by small interfering RNA-mediated gene silencing systems. Moreover, these IRFs displayed distinct properties concerning the profile of IL-7 transcripts upon activation and expression patterns within human colonic epithelial tissues. These results suggest that the functional interplay between IRF-1 and IRF-2 serves as an elaborate and cooperative mechanism for timely as well as continuous regulation of IL-7 production that is essential for local immune regulation within human intestinal mucosa.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Interleucina-7/metabolismo , Mucosa Intestinal/citologia , Fosfoproteínas/metabolismo , Regulação para Cima , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular Tumoral , Células Epiteliais/citologia , Genes Reporter , Humanos , Fator Regulador 1 de Interferon , Fator Regulador 2 de Interferon , Interferon gama/metabolismo , Interleucina-1/metabolismo , Interleucina-7/genética , Mucosa Intestinal/metabolismo , Dados de Sequência Molecular , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Mol Cell Biol ; 24(8): 3324-36, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060154

RESUMO

Recent studies have suggested that Spt6 participates in the regulation of transcription by RNA polymerase II (RNAPII). However, its underlying mechanism remains largely unknown. One possibility, which is supported by genetic and biochemical studies of Saccharomyces cerevisiae, is that Spt6 affects chromatin structure. Alternatively, Spt6 directly controls transcription by binding to the transcription machinery. In this study, we establish that human Spt6 (hSpt6) is a classic transcription elongation factor that enhances the rate of RNAPII elongation. hSpt6 is capable of stimulating transcription elongation both individually and in concert with DRB sensitivity-inducing factor (DSIF), comprising human Spt5 and human Spt4. We also provide evidence showing that hSpt6 interacts with RNAPII and DSIF in human cells. Thus, in vivo, hSpt6 may regulate multiple steps of mRNA synthesis through its interaction with histones, elongating RNAPII, and possibly other components of the transcription machinery.


Assuntos
RNA Polimerase II/metabolismo , Proteínas Repressoras , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Chaperonas de Histonas , Humanos , Técnicas In Vitro , Substâncias Macromoleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição , Fatores de Elongação da Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...