Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(16): 163402, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701474

RESUMO

Optical box traps offer new possibilities for quantum-gas experiments. Building on their exquisite spatial and temporal control, we propose to engineer system-reservoir configurations using box traps, in view of preparing and manipulating topological atomic states in optical lattices. First, we consider the injection of particles from the reservoir to the system: this scenario is shown to be particularly well suited to activating energy-selective chiral edge currents, but also to prepare fractional Chern insulating ground states. Then, we devise a practical evaporative-cooling scheme to effectively cool down atomic gases into topological ground states. Our open-system approach to optical-lattice settings provides a new path for the investigation of ultracold quantum matter, including strongly correlated and topological phases.

2.
Phys Rev Lett ; 132(15): 153401, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682994

RESUMO

The study of geometrically frustrated many-body quantum systems is of central importance to uncover novel quantum mechanical effects. We design a scheme where ultracold bosons trapped in a one-dimensional state-dependent optical lattice are modeled by a frustrated Bose-Hubbard Hamiltonian. A derivation of the Hamiltonian parameters based on Cesium atoms, further show large tunability of contact and nearest-neighbor interactions. For pure contact repulsion, we discover the presence of two phases peculiar to frustrated quantum magnets: the bond-order-wave insulator with broken inversion symmetry and a chiral superfluid. When the nearest-neighbor repulsion becomes sizable, a further density-wave insulator with broken translational symmetry can appear. We show that the phase transition between the two spontaneously symmetry-broken phases is continuous, thus representing a one-dimensional deconfined quantum critical point not captured by the Landau-Ginzburg-Wilson symmetry-breaking paradigm. Our results provide a solid ground to unveil the novel quantum physics induced by the interplay of nonlocal interactions, geometrical frustration, and quantum fluctuations.

3.
Phys Rev Lett ; 130(1): 010201, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669215

RESUMO

Intriguingly, quantum many-body systems may defy thermalization even without disorder. One example is so-called fragmented models, where the many-body Hilbert space fragments into dynamically disconnected subspaces that are not determined by the global symmetries of the model. In this Letter we demonstrate that the tilted one-dimensional Fermi-Hubbard model naturally realizes distinct effective Hamiltonians that are expected to support nonergodic behavior due to fragmentation, even at resonances between the tilt energy and the Hubbard on site interaction. We find that the effective description captures the observed dynamics in experimentally accessible parameter ranges of moderate tilt values. Specifically, we observe a pronounced dependence of the relaxation dynamics on the initial doublon fraction, which directly reveals the microscopic processes of the fragmented model. Our results pave the way for future studies of nonergodic behavior in higher dimensions.


Assuntos
Modelos Moleculares , Vibração
4.
Phys Rev Lett ; 128(24): 246602, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776451

RESUMO

The bulk-boundary correspondence relates quantized edge states to bulk topological invariants in topological phases of matter. In one-dimensional symmetry-protected topological systems, quantized topological Thouless pumps directly reveal this principle and provide a sound mathematical foundation. Symmetry-protected higher-order topological phases of matter (HOSPTs) also feature a bulk-boundary correspondence, but its connection to quantized charge transport remains elusive. Here, we show that quantized Thouless pumps connecting C_{4}-symmetric HOSPTs can be described by a tuple of four Chern numbers that measure quantized bulk charge transport in a direction-dependent fashion. Moreover, this tuple of Chern numbers allows to predict the sign and value of fractional corner charges in the HOSPTs. We show that the topologically nontrivial phase can be characterized by both quadrupole and dipole configurations, shedding new light on current debates about the multipole nature of the HOSPT bulk. By employing corner-periodic boundary conditions, we generalize Restas's theory to HOSPTs. Our approach provides a simple framework for understanding topological invariants of general HOSPTs and paves the way for an in-depth description of future dynamical experiments.

5.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210064, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923836

RESUMO

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.

6.
Nat Commun ; 12(1): 4490, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301932

RESUMO

The thermalization of isolated quantum many-body systems is deeply related to fundamental questions of quantum information theory. While integrable or many-body localized systems display non-ergodic behavior due to extensively many conserved quantities, recent theoretical studies have identified a rich variety of more exotic phenomena in between these two extreme limits. The tilted one-dimensional Fermi-Hubbard model, which is readily accessible in experiments with ultracold atoms, emerged as an intriguing playground to study non-ergodic behavior in a clean disorder-free system. While non-ergodic behavior was established theoretically in certain limiting cases, there is no complete understanding of the complex thermalization properties of this model. In this work, we experimentally study the relaxation of an initial charge-density wave and find a remarkably long-lived initial-state memory over a wide range of parameters. Our observations are well reproduced by numerical simulations of a clean system. Using analytical calculations we further provide a detailed microscopic understanding of this behavior, which can be attributed to emergent kinetic constraints.

7.
Sci Adv ; 5(10): eaav7444, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31646173

RESUMO

From the standard model of particle physics to strongly correlated electrons, various physical settings are formulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical lattices provide a promising avenue to study these complex systems and unravel the underlying many-body physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically, we propose implementation of ℤ2 lattice gauge theories coupled to matter, reminiscent of theories previously introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated systems, with properties dictated by an interplay of dynamical matter and gauge fields.

8.
Phys Rev Lett ; 122(17): 170403, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31107070

RESUMO

We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase that is characterized by a mobility edge. We measure the time evolution of an initial charge density wave after a quench and analyze the corresponding relaxation exponents. We find clear signatures of MBL when the corresponding noninteracting model is deep in the localized phase. We also critically compare and contrast our results with those from a tight-binding Aubry-André model, which does not exhibit a single-particle intermediate phase, in order to identify signatures of a potential many-body intermediate phase.

9.
Science ; 354(6308): 35-36, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27846483
10.
Phys Rev Lett ; 107(21): 210405, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181863

RESUMO

The dynamical control of tunneling processes of single particles plays a major role in science ranging from Shapiro steps in Josephson junctions to the control of chemical reactions via light in molecules. Here we show how such control can be extended to the regime of correlated tunneling of strongly interacting particles. Through a periodic modulation of a biased tunnel contact, we have been able to coherently control single-particle and correlated two-particle hopping processes. We have furthermore been able to extend this control to superexchange spin interactions in the presence of a magnetic-field gradient. Such photon-assisted superexchange processes constitute a novel approach to realize arbitrary XXZ spin models in ultracold quantum gases, where transverse and Ising-type spin couplings can be fully controlled in magnitude and sign.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...