Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743675

RESUMO

Osteocyte lacuno-canalicular network (LCN) is comprised of micrometre-sized pores and submicrometric wide channels in bone. Accumulating evidence suggests multiple functions of this network in material transportation, mechanobiological signalling, mineral homeostasis and bone remodelling. Combining rhodamine staining and confocal laser scanning microscopy, the longitudinal cross-sections of six mouse tibiae were imaged, and the connectome of the network was quantified with a focus on the spatial heterogeneities of network density, connectivity and length of canaliculi. In-vivo loading and double calcein labelling on these tibiae allowed differentiating the newly formed bone from the pre-existing regions. The canalicular density of the murine cortical bone varied between 0.174 and 0.243 µm/µm3, and therefore is three times larger than the corresponding value for human femoral midshaft osteons. The spatial heterogeneity of the network was found distinctly more pronounced across the cortex than along the cortex. We found that in regions with a dense network, the LCN conserves its largely tree-like character, but increases the density by including shorter canaliculi. The current study on healthy mice should serve as a motivating starting point to study the connectome of genetically modified mice, including models of bone diseases and of reduced mechanoresponse.


Assuntos
Conectoma , Osteócitos , Animais , Osteócitos/metabolismo , Osteócitos/fisiologia , Camundongos , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Camundongos Endogâmicos C57BL , Microscopia Confocal , Humanos
2.
J Mech Behav Biomed Mater ; 77: 258-266, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957701

RESUMO

All hierarchical levels in bone are known to contribute to its mechanical behavior. The basic building block is the mineralized collagen fibril which is assembled into larger structures with varying fibrillar organization. The collagen organization increases from unordered woven bone in the callus which is gradually replaced by higher ordered lamellar bone during bone development and healing and finally results in cortical lamellar bone with highest degree of organization. The structural and mechanical description of these organizational motifs is not yet complete. We investigated a femoral osteotomy mouse model and analyzed newly formed callus tissue and mature lamellar bone in the cortex. This model exhibits three bone types with different fibrillar organization: (i) woven, (ii) moderate lamellar and (iii) lamellar. Using high resolution synchrotron small angle X-ray scattering in combination with back-scattered electron imaging we characterized the ultrastructure of the different regions in terms of degree of mineralization, averaged mineral particle thickness and mineral particle orientation. We further used microindentation to correlate hardness, induced crack lengths and crack patterns with the bone ultrastructure. The newly formed callus tissue contains highly mineralized woven bone islands, featuring thick but poorly ordered mineral particles. Such islands are surrounded by layers of lamellar bone with a low mineralization level and thin but well aligned particles. Callus tissue shows lower hardness values and longer cracks than the cortex. Callus woven bone exhibits shorter cracks than callus lamellar bone. However, the poorly mineralized callus lamellar bone shows crack propagation mechanisms similar to cortical bone due to its very similar lamellar organization and high degree of mineral particle orientation. In conclusion we demonstrate that woven and increasingly higher oriented lamellar bone do not only differ in collagen fibril organization, but also that the amount, orientation and different shape of mineral particles are also likely to contribute to the reduced mechanical competence of woven as compared to lamellar bone. This may explain why many organisms replace less organized bone types with higher organized ones.


Assuntos
Osso e Ossos/patologia , Osso e Ossos/fisiologia , Consolidação da Fratura , Fraturas Ósseas/fisiopatologia , Teste de Materiais , Animais , Calcificação Fisiológica , Colágeno/química , Feminino , Dureza , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Modelos Animais , Nanoestruturas/química , Osteotomia , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Estresse Mecânico , Síncrotrons
3.
Acta Biomater ; 21: 154-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25900443

RESUMO

Although it is well known that the bone adapts to changes in the mechanical environment by forming and resorbing the bone matrix, little is known about the influence of mechanical loading on tissue material properties of the pre-existing and newly formed bone. In this study, we analyzed the newly formed and pre-existing tissue after two weeks of controlled in vivo axial compressive loading in tibia of young (10 week-old) and adult (26 week-old) female mice and compared to the control contralateral limb, by means of scanning acoustic microscopy. Additionally, we used quantitative backscattered electron imaging to determine the bone mineral density distribution within the newly formed and pre-existing bone of young mice. No significant differences were found in tissue stiffness or mineral density in the pre-existing bone tissue as a result of external loading. In the endosteal region, 10 and 26 week loaded animals showed a 9% reduction in bone tissue stiffness compared to control animals. An increase of 200% in the mineral apposition rate in this region was observed in both age groups. In the periosteal region, the reduction in bone tissue stiffness and the increase in bone mineral apposition rate as a result of loading were two times higher in the 10 compared to the 26 week old animals. These data suggest that, during growth and skeletal maturation, the response of bone to mechanical loading is a deposition of new bone matrix, where the tissue amount but not its mineral or elastic properties are influenced by animal age.


Assuntos
Elasticidade , Tíbia/fisiopatologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tíbia/crescimento & desenvolvimento
4.
Exp Gerontol ; 63: 48-58, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639943

RESUMO

Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier transform infrared imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone's microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to the new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal age- and tissue age-dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further support the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss.


Assuntos
Colágeno/metabolismo , Osteogênese/fisiologia , Tíbia/diagnóstico por imagem , Suporte de Carga , Fatores Etários , Animais , Densidade Óssea/fisiologia , Osso e Ossos/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Mecânico , Tíbia/fisiologia , Microtomografia por Raio-X
5.
Connect Tissue Res ; 55 Suppl 1: 15-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158172

RESUMO

Bone's mineral properties, such as particle thickness and degree of alignment have been associated with bone quality. Bone formation, remodeling, aging of the tissue and mineral homeostasis influence mineral particle properties leading to specific patterns across bone. Scanning small angle X-ray scattering (sSAXS) with synchrotron radiation is a powerful tool, which allows us to study bone's nanoscale mineral properties in a position-resolved way. We used sSAXS, fluorescence light microscopy and backscattered electron (BSE) imaging to study bone's mineral properties at the tibial midshaft of in vivo-loaded mice. By combining these techniques, we could detect local changes in mineral properties. Regions labeled with calcein fluorochrome have lower mean mineral thickness and degree of mineral alignment. We also observed thinner and less aligned mineral particles near blood vessels. We conclude that mineral properties (i) are altered by fluorochrome labeling and (ii) depend on the proximity to blood vessels.


Assuntos
Osso e Ossos/ultraestrutura , Calcificação Fisiológica/fisiologia , Nanoestruturas , Envelhecimento , Animais , Feminino , Fluoresceínas/química , Camundongos Endogâmicos C57BL , Difração de Raios X/métodos
6.
Bone ; 55(2): 335-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23643681

RESUMO

Bone loss occurs during adulthood in both women and men and affects trabecular bone more than cortical bone. The mechanism responsible for trabecular bone loss during adulthood remains unexplained, but may be due at least in part to a reduced mechanoresponsiveness. We hypothesized that trabecular and cortical bone would respond anabolically to loading and that the bone response to mechanical loading would be reduced and the onset delayed in adult compared to postpubescent mice. We evaluated the longitudinal adaptive response of trabecular and cortical bone in postpubescent, young (10 week old) and adult (26 week old) female C57Bl/6J mice to axial tibial compression using in vivo microCT (days 0, 5, 10, and 15) and dynamic histomorphometry (day 15). Loading elicited an anabolic response in both trabecular and cortical bone in young and adult mice. As hypothesized, trabecular bone in adult mice exhibited a reduced and delayed response to loading compared to the young mice, apparent in trabecular bone volume fraction and architecture after 10 days. No difference in mechanoresponsiveness of the cortical bone was observed between young and adult mice. Finite element analysis showed that load-induced strain was reduced with age. Our results suggest that trabecular bone loss that occurs in adulthood may in part be due to a reduced mechanoresponsiveness in this tissue and/or a reduction in the induced tissue deformation which occurs during habitual loading. Therapeutic approaches that address the mechanoresponsiveness of the bone tissue may be a promising and alternate strategy to maintain trabecular bone mass during aging.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Osteoporose/diagnóstico por imagem , Osteoporose/fisiopatologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Radiografia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...