Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2782: 147-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622399

RESUMO

Immunotherapies represent one of the current most promising challenges in cancer treatment. They are based on the boost of natural immune responses, aimed at cancer eradication. However, the success of immunotherapeutic approaches strictly depends on the interaction between immune cells and cancer cells. Preclinical drug tests currently available are poor in fully predicting the actual safety and efficacy of immunotherapeutic treatments under development. Indeed, conventional 2D cell culture underrepresents the complexity of the tumour microenvironment, while in vivo animal models lack in mimicking the human immune cell responses. In this context, predictability, reliability, and complete immune compatibility still represent challenges to overcome. For this aim, novel 3D, fully humanized in vitro cancer tissue models have been recently optimized by adopting emerging technologies, such as organ-on-chips (OOC) and 3D cancer cell-laden hydrogels. In particular, a novel multi-in vitro organ (MIVO) OOC platform has been recently adopted to culture 3D clinically relevant size cancer tissues under proper physiological culture conditions to investigate anti-cancer treatments and immune-tumour cell crosstalk.The proposed immune-tumour OOC-based model offers a potential tool for accurately modelling human immune-related diseases and effectively assessing immunotherapy efficacy, finally offering promising experimental approaches for personalized medicine.


Assuntos
Neoplasias , Animais , Humanos , Avaliação Pré-Clínica de Medicamentos , Reprodutibilidade dos Testes , Neoplasias/terapia , Técnicas de Cultura de Células , Microambiente Tumoral , Imunoterapia
2.
Front Bioeng Biotechnol ; 10: 945149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957642

RESUMO

The success of immunotherapeutic approaches strictly depends on the immune cells interaction with cancer cells. While conventional in vitro cell cultures under-represent the complexity and dynamic crosstalk of the tumor microenvironment, animal models do not allow deciphering the anti-tumor activity of the human immune system. Therefore, the development of reliable and predictive preclinical models has become crucial for the screening of immune-therapeutic approaches. We here present an organ-on-chip organ on chips (OOC)-based approach for recapitulating the immune cell Natural Killer (NK) migration under physiological fluid flow, infiltration within a 3D tumor matrix, and activation against neuroblastoma cancer cells in a humanized, fluid-dynamic environment. Circulating NK cells actively initiate a spontaneous "extravasation" process toward the physically separated tumor niche, retaining their ability to interact with matrix-embedded tumor cells, and to display a cytotoxic effect (tumor cell apoptosis). Since NK cells infiltration and phenotype is correlated with prognosis and response to immunotherapy, their phenotype is also investigated: most importantly, a clear decrease in CD16-positive NK cells within the migrated and infiltrated population is observed. The proposed immune-tumor OOC-based model represents a promising approach for faithfully recapitulating the human pathology and efficiently employing the immunotherapies testing, eventually in a personalized perspective. An immune-organ on chip to recapitulate the tumor-mediated infiltration of circulating immune cells within 3D tumor model.

3.
SLAS Technol ; 27(3): 161-171, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35058208

RESUMO

In vitro diffusive models are an important tool to screen the penetration ability of active ingredients in various formulations. A reliable assessment of skin penetration enhancing properties, mechanism of action of carrier systems, and an estimation of a bioavailability are essential for transdermal delivery. Given the importance of testing the penetration kinetics of different compounds across the skin barrier, several in vitro models have been developedThe aim of this study was to compare the Franz Diffusion Cell (FDC) with a novel fluid-dynamic platform (MIVO) by evaluating penetration ability of caffeine, a widely used reference substance, and LIP1, a testing molecule having the same molecular weight but a different lipophilicity in the two diffusion chamber systems. A 0.7% caffeine or LIP1 formulation in either water or propylene glycol (PG) containing oleic acid (OA) was topically applied on the Strat-M® membrane or pig ear skin, according to the infinite-dose experimental condition (780 ul/cm2). The profile of the penetration kinetics was determined by quantify the amount of molecule absorbed at different time-points (1, 2, 4, 6, 8 hours), by means of HPLC analysis. Both diffusive systems show a similar trend for caffeine and LIP1 penetration kinetics. The Strat-M® skin model shows a lower barrier function than the pig skin biopsies, whereby the PGOA vehicle exhibits a higher penetration, enhancing the effect for both diffusive chambers and skin surrogates. Most interestingly, MIVO diffusive system better predicts the lipophilic molecules (i.e. LIP1) permeation through highly physiological fluid flows resembled below the skin models.


Assuntos
Cafeína , Absorção Cutânea , Administração Cutânea , Animais , Cafeína/metabolismo , Cafeína/farmacologia , Pele/metabolismo , Suínos
4.
ALTEX ; 38(1): 82-94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32754773

RESUMO

Recently, 3D in vitro cancer models have become important alternatives to animal tests for establishing the efficacy of anticancer treatments. In this work, 3D SKOV-3 cell-laden alginate hydrogels were established as ovarian tumor models and cultured within a fluid-dynamic bioreactor (MIVO®) device able to mimic the capillary flow dynamics feeding the tumor. Cisplatin efficacy tests were performed within the device over time and compared with (i) the in vitro culture under static conditions and (ii) a xenograft mouse model with SKOV-3 cells, by monitoring and measuring cell proliferation or tumor regression, respectively, over time. After one week of treatment with 10 µM cisplatin, viability of cells within the 3D hydrogels cultured under static conditions remained above 80%. In contrast, the viability of cells within the 3D hydrogels cultured within dynamic MIVO® decreased by up to 50%, and very few proliferating Ki67-positive cells were observed through immunostaining. Analysis of drug diffusion, confirmed by computational analysis, explained that these results are due to different cisplatin diffusion mechanisms in the two culture conditions. Interestingly, the outcome of the drug efficacy test in the xenograft model was about 44% of tumor regression after 5 weeks, as predicted in a shorter time in the fluid-dynamic in vitro tests carried out in the MIVO® device. These results indicate that the in vivo-like dynamic environment provided by the MIVO® device allows to better model the 3D tumor environment and predict in vivo drug efficacy than a static in vitro model.


Assuntos
Alternativas aos Testes com Animais , Antineoplásicos/uso terapêutico , Reatores Biológicos , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Neoplasias Experimentais
5.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217936

RESUMO

IoT networks are increasingly popular nowadays to monitor critical environments of different nature, significantly increasing the amount of data exchanged. Due to the huge number of connected IoT devices, security of such networks and devices is therefore a critical issue. Detection systems assume a crucial role in the cyber-security field: based on innovative algorithms such as machine learning, they are able to identify or predict cyber-attacks, hence to protect the underlying system. Nevertheless, specific datasets are required to train detection models. In this work we present MQTTset, a dataset focused on the MQTT protocol, widely adopted in IoT networks. We present the creation of the dataset, also validating it through the definition of a hypothetical detection system, by combining the legitimate dataset with cyber-attacks against the MQTT network. Obtained results demonstrate how MQTTset can be used to train machine learning models to implement detection systems able to protect IoT contexts.

6.
Sensors (Basel) ; 20(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455752

RESUMO

Security of the Internet of Things is a crucial topic, due to the criticality of the networks and the sensitivity of exchanged data. In this paper, we target the Message Queue Telemetry Transport (MQTT) protocol used in IoT environments for communication between IoT devices. We exploit a specific weakness of MQTT which was identified during our research, allowing the client to configure the behavior of the server. In order to validate the possibility to exploit such vulnerability, we propose SlowITe, a novel low-rate denial of service attack aimed to target MQTT through low-rate techniques. We validate SlowITe against real MQTT services, considering both plain text and encrypted communications and comparing the effects of the threat when targeting different daemons. Results show that the attack is successful and it is able to exploit the identified vulnerability to lead a DoS on the victim with limited attack resources.

7.
ALTEX ; 37(2): 255-264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31893489

RESUMO

Intestinal permeability is crucial in regulating the bioavailability and, consequently, the biological effects of drugs and compounds. However, systematic and quantitative studies of the absorption of molecules are quite limited due to a lack of reliable experimental models able to mimic human in vivo responses. In this work, we present an in vitro perfused model of the small intestinal barrier using a 3D reconstructed intestinal epithelium integrated into a fluid-dynamic biore­actor (MIVO®) resembling the physiological stimuli of the intestinal environment. This platform was investigated in both healthy and induced pathological conditions by monitoring the absorption of two non-metabolized sugars, lactulose and mannitol, frequently used as indicators of intestinal barrier dysfunctions. In healthy conditions, an in vivo-like plateau of the percentage of absorbed sugars was reached, where mannitol absorption was much greater than lactulose absorption. Moreover, a model of pathologically altered intestinal permeability was generated by depleting extracellular Ca2+, using a calcium-specific chelator. After calcium depletion, the pattern of sugar passage observed under pathological conditions was reversed only in dynamic conditions in the MIVO® chamber, due to the dynamic fluid flow beneath the membrane, but not in static conditions. Therefore, the combination of the MIVO® with the EpiIntestinal™ platform can rep­resent a reliable in vitro model to study the passage of molecules across the healthy or pathological small intestinal barrier by discriminating the two main mechanisms of intestinal absorption.


Assuntos
Alternativas aos Testes com Animais , Intestinos/fisiologia , Dispositivos Lab-On-A-Chip , Açúcares/metabolismo , Animais , Transporte Biológico , Modelos Biológicos
8.
Front Immunol ; 10: 1876, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447858

RESUMO

High risk Neuroblastoma (NB) includes aggressive, metastatic solid tumors of childhood. The survival rate improved only modestly, despite the use of combination therapies including novel immunotherapies based on the antibody-mediated targeting of tumor-associated surface ligands. Treatment failures may be due to the lack of adequate in vitro models for studying, in a given patient, the efficacy of potential therapeutics, including those aimed to enhance anti-tumor immune responses. We here propose a 3D alginate-based hydrogel as extracellular microenvironment to evaluate the effects of the three-dimensionality on biological and immunological properties of NB cells. NB cell lines grown within the 3D alginate spheres presented spheroid morphology, optimal survival, and proliferation capabilities, and a reduced sensitivity to the cytotoxic effect of imatinib mesylate. 3D cultured NB cells were also evaluated for the constitutive and IFN-γ-induced expression of surface molecules capable of tuning the anti-tumor activity of NK cells including immune checkpoint ligands. In particular, IFN-γ induced de novo expression of high amounts of HLA-I molecules, which protected NB cells from the attack mediated by KIR/KIR-L matched NK cells. Moreover, in the 3D alginate spheres, the cytokine increased the expression of the immune checkpoint ligands PD-Ls and B7-H3 while virtually abrogating that of PVR, a ligand of DNAM-1 activating receptor, whose expression correlates with high susceptibility to NK-mediated killing. Our 3D model highlighted molecular features that more closely resemble the immunophenotypic variants occurring in vivo and not fully appreciated in classical 2D culture conditions. Thus, based on our results, 3D alginate-based hydrogels might represent a clinical-relevant cell culture platform where to test the efficacy of personalized therapeutic approaches aimed to optimize the current and innovative immune based therapies in a very systematic and reliable way.


Assuntos
Hidrogéis , Neuroblastoma , Alginatos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mesilato de Imatinib/farmacologia , Imunofenotipagem , Células Matadoras Naturais/imunologia , Modelos Biológicos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Neuroblastoma/patologia
9.
J R Soc Interface ; 15(144)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29997259

RESUMO

Alternative drug delivery approaches to treat cardiovascular diseases are currently under intense investigation. In this domain, the possibility to target the heart and tailor the amount of drug dose by using a combination of magnetic nanoparticles (NPs) and electromagnetic devices is a fascinating approach. Here, an electromagnetic device based on Helmholtz coils was generated for the application of low-frequency magnetic stimulations to manage drug release from biocompatible superparamagnetic Fe-hydroxyapatite NPs (FeHAs). Integrated with a fluidic circuit mimicking the flow of the cardiovascular environment, the device was efficient to trigger the release of a model drug (ibuprofen) from FeHAs as a function of the applied frequencies. Furthermore, the biological effects on the cardiac system of the identified electromagnetic exposure were assessed in vitro and in vivo by acute stimulation of isolated adult cardiomyocytes and in an animal model. The cardio-compatibility of FeHAs was also assessed in vitro and in an animal model. No alterations of cardiac electrophysiological properties were observed in both cases, providing the evidence that the combination of low-frequency magnetic stimulations and FeHAs might represent a promising strategy for controlled drug delivery to the failing heart.


Assuntos
Doenças Cardiovasculares , Portadores de Fármacos , Durapatita , Campos Eletromagnéticos , Nanopartículas de Magnetita , Miócitos Cardíacos/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Linhagem Celular , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Durapatita/química , Durapatita/farmacocinética , Durapatita/farmacologia , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Masculino , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley
10.
Biotechnol Bioeng ; 113(10): 2286-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27093435

RESUMO

Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc.


Assuntos
Materiais Biomiméticos/síntese química , Substitutos Ósseos/química , Desenho Assistido por Computador , Matriz Extracelular/química , Impressão Tridimensional , Alicerces Teciduais , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Porosidade
11.
Biotechnol Bioeng ; 111(10): 2107-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25073412

RESUMO

A theoretical model of the 3D scaffold internal architecture has been implemented with the aim to predict the effects of some geometrical parameters on total porosity, Young modulus, buckling resistance and permeability of the graft. This model has been adopted to produce porous poly-caprolacton based grafts for chondral tissue engineering applications, best tuning mechanical and functional features of the scaffolds. Material prototypes were produced with an internal geometry with parallel oriented cylindrical pores of 200 µm of radius (r) and an interpore distance/pores radius (d/r) ratio of 1. The scaffolds have been then extensively characterized; progenitor cells were then used to test their capability to support cartilaginous matrix deposition in an ectopic model. Scaffold prototypes fulfill both the chemical-physical requirements, in terms of Young's modulus and permeability, and the functional needs, such as surface area per volume and total porosity, for an enhanced cellular colonization and matrix deposition. Moreover, the grafts showed interesting chondrogenic potential in vivo, besides offering adequate mechanical performances in vitro, thus becoming a promising candidate for chondral tissues repair. Finally, a very good agreement was found between the prediction of the theoretical model and the experimental data. Many assumption of this theoretical model, hereby applied to cartilage, may be transposed to other tissue engineering applications, such as bone substitutes.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Bovinos , Células Cultivadas , Condrócitos/citologia , Módulo de Elasticidade , Teste de Materiais , Camundongos , Modelos Químicos , Porosidade , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...