Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sci Rep ; 13(1): 14186, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648885

RESUMO

Senescent cells are predicted to occur and increase in animal tissues with aging. However, senescent cells in the tissues of aged animals remain to be identified. We refer to the marker genes to identify senescent cells in tissues as "age-associated genes". In this study, we searched for age-associated genes to identify senescent cells in the livers of aged animals. We performed single-cell RNA sequencing (scRNA-seq) to screen candidates for age-associated genes using young and aged rat primary hepatocytes. To remove animal species specificity, gene expression analyses in mouse livers were performed, confirming age-associated increases in the mRNA expression levels of Glipr1, Clec12a, and Phlda3. Moreover, the mRNA expression levels of Glipr1 and Phlda3 were increased by stress-induced premature senescence using doxorubicin in primary hepatocytes and livers of young mice. Transcriptome data of aged rat hepatocytes suggested that Glipr1, Clec12a, and Phlda3 were expressed in almost identical cells. Fluorescence in situ hybridization (FISH) confirmed the presence of cells with abundant Glipr1, Clec12a, and Phlda3 mRNA in 27-month-old mouse primary hepatocytes, which are considered to be senescent cells. This study is the first to identify Glipr1, Clec12a, and Phlda3 as age-associated genes in the mouse liver.


Assuntos
Senescência Celular , Fígado , Camundongos , Ratos , Animais , Hibridização in Situ Fluorescente , Senescência Celular/genética , RNA Mensageiro/genética , Análise de Sequência de RNA
2.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861793

RESUMO

Many organs of Drosophila show stereotypical left-right (LR) asymmetry; however, the underlying mechanisms remain elusive. Here, we have identified an evolutionarily conserved ubiquitin-binding protein, AWP1/Doctor No (Drn), as a factor required for LR asymmetry in the embryonic anterior gut. We found that drn is essential in the circular visceral muscle cells of the midgut for JAK/STAT signaling, which contributes to the first known cue for anterior gut lateralization via LR asymmetric nuclear rearrangement. Embryos homozygous for drn and lacking its maternal contribution showed phenotypes similar to those with depleted JAK/STAT signaling, suggesting that Drn is a general component of JAK/STAT signaling. Absence of Drn resulted in specific accumulation of Domeless (Dome), the receptor for ligands in the JAK/STAT signaling pathway, in intracellular compartments, including ubiquitylated cargos. Dome colocalized with Drn in wild-type Drosophila. These results suggest that Drn is required for the endocytic trafficking of Dome, which is a crucial step for activation of JAK/STAT signaling and the subsequent degradation of Dome. The roles of AWP1/Drn in activating JAK/STAT signaling and in LR asymmetric development may be conserved in various organisms.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Transdução de Sinais/fisiologia , Endocitose/genética , Janus Quinases/genética , Janus Quinases/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo
3.
Biochem Biophys Res Commun ; 556: 192-198, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33845309

RESUMO

Helicobacter pylori (H. pylori) infection mainly causes gastroduodenal diseases, including chronic gastritis, peptic ulcer disease and gastric cancer. In recent years, several studies have demonstrated that infection with H. pylori, especially strains harboring the virulence factor CagA (cytotoxin-associated gene A), contribute to the development of non-gastric systemic diseases, including hypercholesterolemia and atherosclerotic cardiovascular diseases. However, mechanisms underlying this association has not been defined. In this study, we carried out a large-scale genetic screen using Drosophila and identified a novel CagA target low-density lipoprotein receptor (LDLR), which aids in the clearance of circulating LDL. We showed that CagA physically interacted with LDLR via its carboxy-terminal region and inhibited LDLR-mediated LDL uptake into cells. Since deficiency of LDLR-mediated LDL uptake has been known to increase plasma LDL and accelerate atherosclerosis, our findings may provide a novel mechanism for the association between infection with CagA-positive H. pylori and hypercholesterolemia leading to atherosclerotic cardiovascular diseases.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Lipoproteínas LDL/metabolismo , Receptores de LDL/metabolismo , Fatores de Virulência/metabolismo , Animais , Animais Geneticamente Modificados , Aterosclerose/microbiologia , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Olho/metabolismo , Feminino , Humanos , Hipercolesterolemia/microbiologia , Lipoproteínas LDL/sangue , Masculino , Ligação Proteica
4.
iScience ; 24(12): 103473, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34988396

RESUMO

The nuclear factor-kappa B (NF-κB) pathway is an evolutionarily conserved signaling pathway that plays a central role in immune responses and inflammation. Here, we show that Drosophila NF-κB signaling is activated via a pathway in parallel with the Toll receptor by receptor-type guanylate cyclase, Gyc76C. Gyc76C produces cyclic guanosine monophosphate (cGMP) and modulates NF-κB signaling through the downstream Tollreceptor components dMyd88, Pelle, Tube, and Dif/Dorsal (NF-κB). The cGMP signaling pathway comprises a membrane-localized cGMP-dependent protein kinase (cGK) called DG2 and protein phosphatase 2A (PP2A) and is crucial for host survival against Gram-positive bacterial infections in Drosophila. A membrane-bound cGK, PRKG2, also modulates NF-κB activation via PP2A in human cells, indicating that modulation of NF-κB activation in innate immunity by the cGMP signaling pathway is evolutionarily conserved.

5.
PLoS One ; 15(11): e0242171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237970

RESUMO

Adipose-derived stem cells (ASCs) exhibit self-renewal and pluripotency. The differentiation potency of ASCs has been reported to deteriorate with aging; however, relevant studies used ASCs that were isolated and subcultured several times. It is still unclear whether subcultured ASCs accurately reflect the in vivo state. To address this question, we used freshly isolated stromal vascular fractions (SVFs) and performed comprehensive single-cell transcriptome analysis. In this study, we identified three cell populations as putative ASC candidates in SVFs and three novel ASC-related genes: Adamts7, Snai2, and Tgfbr1, that are reported to be negative regulators of cell differentiation. Moreover, we identified age-associated high gene expression levels of Adamts7, Egfr, and Igfbp4 in the earliest differentiation stage of ASCs. These results suggest that aging may make it impossible to maintain the stringency of the regulation of the expression of some genes related to ASC differentiation.


Assuntos
Tecido Adiposo/citologia , Envelhecimento/genética , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Proteína ADAMTS7/genética , Proteína ADAMTS7/metabolismo , Envelhecimento/metabolismo , Animais , Masculino , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Análise de Célula Única , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
6.
FEBS Lett ; 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32294252

RESUMO

Tetratricopeptide repeat protein 37 (TTC37) is a causative gene of trichohepatoenteric syndrome (THES). However, little is known about the pathogenesis of this disease. Here, we characterize the phenotype of a Drosophila model in which ski3, a homolog of TTC37, is disrupted. The mutant flies are pupal lethal, and the pupal lethality is partially rescued by transgenic expression of wild-type ski3 or human TTC37. The mutant larvae show growth retardation, heart arrhythmia, triacylglycerol accumulation, and aberrant metabolism of glycolysis and the TCA cycle. Moreover, mitochondrial membrane potential and respiratory chain complex activities are significantly reduced in the mutants. Our results demonstrate that ski3 deficiency causes mitochondrial dysfunction, which may underlie the pathogenesis of THES.

7.
Drug Chem Toxicol ; 43(3): 255-265, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30033776

RESUMO

Methylmercury (MeHg) is a well-known toxic pollutant. However, little is known about the effects of this toxic agent in an adult as a consequence of a parental or preimaginal exposure. This study used Drosophila melanogaster to investigate whether a parental or a preimaginal (eggs-larvae-pupae stages) exposure could impact parameters as viability, locomotor activity, and sleep patterns of fruit flies. Thus, we performed two exposure protocols. One where just parents were exposed to MeHg (0-12 µM) during 24 h, then flies were transferred to lay eggs in a healthy medium (without MeHg). In the other, flies were set to lay eggs in a MeHg medium, same concentrations, and discarded after this (preimaginal exposure). Viability was evaluated from egg to adult flies. F1 progeny was collected within 24 h and transferred to a fresh healthy medium. Sleep behavior analysis was performed using Drosophila Active Monitoring System (DAMS), and the locomotor activity was evaluated by climbing assay. Results have shown that the parental exposure had a significant impact on F1 progeny reducing viability and locomotor activity performance, but no significant circadian rhythm alterations. Whereas the preimaginal exposure had a stronger effect decreasing viability and locomotor activity, it also disrupted sleep patterns. MeHg preimaginal exposure showed a longer sleep duration and lower daily activity. Results corroborate the hypothesis that low MeHg exposure could trigger subclinical symptoms related to a 'neurotoxicological development effect'. Complementary investigations could clarify the underlying mechanisms of MeHg effects in neural functions due to parental and early development exposure to this toxicant.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Locomoção/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Animais , Drosophila melanogaster/efeitos dos fármacos , Feminino , Estágios do Ciclo de Vida , Masculino , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/fisiopatologia , Sono/efeitos dos fármacos
8.
Sci Rep ; 9(1): 4702, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894591

RESUMO

L-Ascorbic acid (AsA) is a water-soluble antioxidant. We examined the effect of AsA deficiency on skeletal muscle using senescence marker protein-30 (SMP30)-knockout (KO) mice that are defective in AsA biosynthesis, which makes this mouse model similar to humans, to clarify the function of AsA in skeletal muscle. Eight-week-old female SMP30-KO mice were divided into the following two groups: an AsA-sufficient group [AsA(+)] that was administered 1.5 g/L AsA and an AsA-deficient group [AsA(-)] that was administered tap (AsA-free) water. At 4 weeks, the AsA content in the gastrocnemius muscle of AsA(-) mice was 0.7% compared to that in the gastrocnemius muscle of AsA(+) mice. Significantly lower weights of all muscles were observed in AsA(-) mice than those in AsA(+) mice at 12 and 16 weeks. The cross-sectional area of the soleus was significantly smaller in AsA(-) mice at 16 weeks than that in AsA(+) mice. The physical performance of AsA(-) mice was significantly less than that of AsA(+) mice at 12 weeks. Following AsA deficiency for 12 weeks, the expression of ubiquitin ligases, such as atrogin1/muscle atrophy F-box (MAFbx) and muscle RING-finger protein 1 (MuRF1), was upregulated. Furthermore, all detected effects of AsA deficiency on muscles of the AsA(-) group at 12 weeks were restored following AsA supplementation for 12 weeks. Thus, longer-term AsA deficiency is associated with muscle wasting, that this can be reversed by restoring AsA levels.


Assuntos
Deficiência de Ácido Ascórbico/complicações , Deficiência de Ácido Ascórbico/fisiopatologia , Ácido Ascórbico/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/fisiopatologia , Animais , Feminino , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/fisiologia
9.
Environ Sci Pollut Res Int ; 26(15): 15069-15083, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30915696

RESUMO

Methylmercury (MeHg) is a well-known environmental pollutant associated with neurological and developmental deficits in animals and humans. However, epidemiological data showed that people living in the Amazon region although exposed to MeHg do not present these effects probably due to the protective effect of certain foods. We hypothesized here if guarana, a highly caffeinated fruit and consumed on a daily basis by Amazon people, could have some protective effect against MeHg toxicity using two complementary approaches. To assess locomotor impairment and sleep disruption, we used fruit fly (Drosophila melanogaster) model, and to evaluate neuroinflammation, we used human SH-SY5Y neural cells by measuring inflammatory cytokines levels. Results showed that guarana had a protective effect on the locomotor activity of male fruit flies reducing the excessive sleepiness caused by MeHg and increasing daily activity. Also, guarana increased the viability of flies and attenuated neural cells mortality. In addition, guarana reduced all pro-inflammatory cytokines levels increased by MeHg, along with caspase-1, caspase -3, caspase-8, and 8-dOHG levels, whereas increased the anti-inflammatory (IL-10) cytokine levels, which was decreased by MeHg. Our study provides new insights on the protective effects of guarana on the viability, locomotor activity, sleep, and activity patterns in vivo and the in vitro neuronal anti-inflammatory effect against MeHg toxicity.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Inflamação/induzido quimicamente , Compostos de Metilmercúrio/toxicidade , Neurônios/efeitos dos fármacos , Paullinia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Caspases/metabolismo , Linhagem Celular , Ritmo Circadiano/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Drosophila melanogaster/fisiologia , Humanos , Inflamação/prevenção & controle , Interleucina-10/metabolismo
10.
Anal Chem ; 90(19): 11179-11182, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30175583

RESUMO

A new type of turn-on electrochemical protein detection is developed using an electropolymerizable molecular probe. To detect trypsin, a benzamidine ligand is conjugated with a thiophene moiety. Encapsulation of the probe in the trypsin pocket prevents electropolymerization, leading to efficient electron transfer from the electrolyte to the electrode. In contrast, unbound probes can become electropolymerized, yielding a polythiophene layer on the electrode. The polythiophene formed this way suppressed electron transfer. The detection limit of trypsin using this electrochemical strategy is 50 nM. The method is shown to be useful for nonenzymatic turn-on electrochemical detection.


Assuntos
Sondas Moleculares/química , Polímeros/química , Tiofenos/química , Tripsina/análise , Eletroquímica , Eletrodos , Ligantes , Polimerização , Tripsina/química
11.
Chem Commun (Camb) ; 54(54): 7542, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29942969

RESUMO

Correction for 'In vitro selection of electrochemical peptide probes using bioorthogonal tRNA for influenza virus detection' by Tara Bahadur K. C. et al., Chem. Commun., 2018, 54, 5201-5204.

12.
Chem Commun (Camb) ; 54(41): 5201-5204, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29718049

RESUMO

An electrosensitive peptide probe has been developed from an in vitro selection technique using biorthogonal tRNA prepared with an electroreactive non-natural amino acid, 3,4-ethylenedioxythiophene-conjugated aminophenylalanine. The selected probe quantitatively detected the influenza virus based on a signal "turn-on" mechanism. The developed strategy could be used to develop electrochemical biosensors toward a variety of targets.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Sondas Moleculares/química , Orthomyxoviridae/isolamento & purificação , Peptídeos/química , RNA de Transferência/química
13.
Biochem Biophys Res Commun ; 500(2): 283-287, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29660346

RESUMO

Detection of the cells expressing an epithelial cell adhesion molecule (EpCAM) is a crucial step to identify circulating tumor cells (CTCs) from blood. To detect the EpCAM, we here designed and synthesized a series of fluorogenic peptides. Specifically, we functionalized an EpCAM-binding peptide, Ep114, by replacing its amino acids to an aminophenylalanine that was modified with environmentally sensitive 7-nitro-2,1,3-benzoxadiazole (NBD-amPhe). Among six synthesized peptides, we have found that two peptides, Q4X and V6X (X represents NBD-amPhe), retain the Ep114's binding ability and specifically mark EpCAM-expressing cells by just adding these peptides to the cultivation medium. Our wash-free, fluorogenic peptide ligands would boost the development of next generation devices for CTC diagnoses.


Assuntos
Molécula de Adesão da Célula Epitelial/metabolismo , Corantes Fluorescentes/metabolismo , Imagem Molecular/métodos , Peptídeos/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Molécula de Adesão da Célula Epitelial/química , Humanos , Ligantes , Peptídeos/química , Ligação Proteica
14.
Biochem Biophys Res Commun ; 497(2): 762-768, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29462618

RESUMO

Regulation of cell and organ sizes is fundamental for all organisms, but its molecular basis is not fully understood. Here we performed a gain-of-function screen and identified larp4B whose overexpression reduces cell and organ sizes in Drosophila melanogaster. Larp4B is a member of La-related proteins (LARPs) containing an LA motif and an adjacent RNA recognition motif (RRM), and play diverse roles in RNA metabolism. However, the function of Larp4B has remained poorly characterized. We generated transgenic flies overexpressing wild-type Larp4B or a deletion variant lacking the LA and RRM domains, and demonstrated that the RNA-binding domains are essential for Larp4B to reduce cell and organ sizes. We found that the larp4B-induced phenotype was suppressed by dMyc overexpression, which promotes cell growth and survival. Furthermore, overexpression of larp4B decreased dMyc protein levels, whereas its loss-of-function mutation had an opposite effect. Our results suggest that Larp4B is a negative regulator of dMyc.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Fatores de Transcrição/genética , Regulação para Cima , Animais , Tamanho Celular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Drosophila melanogaster/química , Drosophila melanogaster/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Tamanho do Órgão , Fenótipo , Domínios Proteicos , Fatores de Transcrição/química
15.
Sci Rep ; 7: 43272, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233875

RESUMO

One of the most powerful attributes of proteins is their ability to bind to and modulate the chemistry of cofactors and prosthetic groups. Here, we demonstrated the ability of an artificial nucleic acid (an aptamer) to similarly control the functionality of a non-biological element. Specifically, we selected an RNA aptamer that binds tris(bipyridine) ruthenium (II), Ru(bpy)32+, an inorganic complex that has attracted intense interest due to its photoredox chemistry, including its ability to split water by visible light. We found that a newly discovered aptamer strongly and enantioselectively binds Λ-Ru(bpy)32+ (Kd = 65 nM) and, in doing so, selectively suppresses deactivation via energy transfer, thereby elongating the lifetime of its photo-excited state by four-fold. The ability of the aptamer to enhance this important aspect of Ru(bpy)32+ chemistry illustrates a broader point concerning the potential power of combining in vitro-created biomolecules with non-biological reactants to perform enhanced chemical reactions.


Assuntos
Aptâmeros de Nucleotídeos/química , Compostos Organometálicos/química , Processos Fotoquímicos , Calorimetria , Termodinâmica
16.
Genes Cells ; 22(1): 71-83, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27935189

RESUMO

We carried out liquid chromatography-tandem mass spectrometry analysis of metabolites in mice. Those metabolome data showed that hepatic glucose content is reduced, but that brain glucose content is unaffected, during fasting, consistent with the priority given to brain glucose consumption during fasting. The molecular mechanisms for this preferential glucose supply to the brain are not fully understood. We also showed that the fasting-induced production of the ketone body ß-hydroxybutyrate (ß-OHB) enhances expression of the glucose transporter gene Slc2a1 (Glut1) via histone modification. Upon ß-OHB treatment, Slc2a1 expression was up-regulated, with a concomitant increase in H3K9 acetylation at the critical cis-regulatory region of the Slc2a1 gene in brain microvascular endothelial cells and NB2a neuronal cells, shown by quantitative PCR analysis and chromatin immunoprecipitation assay. CRISPR/Cas9-mediated disruption of the Hdac2 gene increased Slc2a1 expression, suggesting that it is one of the responsible histone deacetylases (HDACs). These results confirm that ß-OHB is a HDAC inhibitor and show that ß-OHB plays an important role in fasting-induced epigenetic activation of a glucose transporter gene in the brain.


Assuntos
Epigênese Genética/genética , Transportador de Glucose Tipo 1/biossíntese , Glucose/metabolismo , Histona Desacetilase 2/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Acetilação , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sistemas CRISPR-Cas , Células Endoteliais/metabolismo , Jejum , Transportador de Glucose Tipo 1/metabolismo , Código das Histonas/genética , Histona Desacetilase 2/genética , Corpos Cetônicos/metabolismo , Metaboloma/genética , Camundongos , Neurônios/metabolismo
17.
Biochem Biophys Res Commun ; 483(1): 566-571, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28017724

RESUMO

Succinyl-CoA synthetase/ligase (SCS) is a mitochondrial enzyme that catalyzes the reversible process from succinyl-CoA to succinate and free coenzyme A in TCA cycle. SCS deficiencies are implicated in mitochondrial hepatoencephalomyopathy in humans. To investigate the impact of SCS deficiencies in Drosophila, we generated a null mutation in Scs alpha subunit (Scsα) using the CRISPR/Cas9 system, and characterized their phenotype. We found that the Drosophila SCS deficiency, designated ScsαKO, contained a high level of succinyl-CoA, a substrate for the enzyme, and altered levels of various metabolites in TCA cycle and glycolysis, indicating that the energy metabolism was impaired. Unlike SCSα deficiencies in humans, there was no reduction in lifespan, indicating that Scsα is not critical for viability in Drosophila. However, they showed developmental delays, locomotor activity defects, and reduced survival under starvation. We also found that glycogen breakdown occurred during development, suggesting that the mutant flies were unable to produce sufficient energy to promote normal growth. These results suggested that SCSα is essential for proper energy metabolism in Drosophila. The ScsαKO flies should be useful as a model to understand the physiological role of SCSα as well as the pathophysiology of SCSα deficiency.


Assuntos
Acil Coenzima A/deficiência , Proteínas de Drosophila/deficiência , Drosophila melanogaster/fisiologia , Metabolismo Energético , Privação de Alimentos , Locomoção , Acil Coenzima A/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Sobrevivência Celular , Ciclo do Ácido Cítrico , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Glicogênio/metabolismo , Glicólise , Masculino , Mitocôndrias/metabolismo , Fenótipo , Inanição
18.
Biotechnol Lett ; 39(3): 375-382, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27858320

RESUMO

OBJECTIVES: We examined the importance of aptamer usage under the same condition as the selection process by employing the previously selected aptamers for calmodulin (CaM) which includes a non-natural fluorogenic amino acid, 7-nitro-2,1,3-benzoxadiazole. RESULTS: We added five amino acids at the N-terminus which was employed for the selection and then we tested the affinity and selectivity for CaM binding. Surface plasmon resonance and fluorescence measurements showed that the additional amino acids for one of the aptamers drastically improved binding affinity to CaM, indicating the importance of aptamer use under the same conditions as the selection process. Such drastic improvement in affinity was not observed for the sequence which had been reported previously. Nuclear magnetic resonance data identified that the primary binding site is located in a C-terminal of CaM and the additional residues enhance interactions with CaM. CONCLUSIONS: We found that the addition of the common sequence, which was employed for ribosome display, makes the affinity of a selected peptide as strong as the previously reported peptide.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Calmodulina/metabolismo , Sequência de Aminoácidos , Animais , Aptâmeros de Peptídeos/química , Bovinos , Fluorescência , Espectroscopia de Ressonância Magnética , Ligação Proteica , Solubilidade , Ressonância de Plasmônio de Superfície
19.
Fly (Austin) ; 10(4): 172-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27230918

RESUMO

The Drosophila sex-peptide (SP) has been identified as a seminal fluid component that induces post-mating responses (PMRs) in the inseminated females, such as inhibition of remating and stimulation of egg-laying. SP has been thought to play a central role in sexual conflict and sexually antagonistic co-evolution. Most of the sequenced Drosophila genomes contain SP orthologs, but their functions have been poorly characterized. Recently, we have investigated cross-species activity of D. melanogaster SP by means of injection into virgin females of other species. Among 11 species examined, SP response was observed in 6 species belonging to the D. melanogaster species group only. These species females express SP receptor (SPR) in their oviducts at relatively high levels, which was visualized by using a GFP-tagged SP. Furthermore, females of this species group responded to their own SP orthologs. However, females of the species outside the group did not respond to their own SP orthologs, even though all of them were potent inducers of SP-response in D. melanogaster. Our results suggested that the SP/SPR-mediated PMR was established in the lineage of the D. melanogaster species group.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila/genética , Peptídeos/metabolismo , Sêmen/química , Animais , Evolução Biológica , Drosophila/classificação , Drosophila/fisiologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Receptores de Peptídeos/análise , Receptores de Peptídeos/genética , Comportamento Sexual Animal
20.
PLoS Genet ; 12(1): e1005679, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26741492

RESUMO

Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.


Assuntos
Exoma/genética , Heterogeneidade Genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , DNA Mitocondrial/genética , Feminino , Fibroblastos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL/genética , Lactente , Recém-Nascido , Masculino , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...