Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Int Astron Union ; 15(Suppl 354): 200-203, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33014118

RESUMO

Together with the stellar rotation, the spotted surfaces of low-mass magnetically active stars produce modulations in their brightness. These modulations can be resolved by photometric variability surveys, allowing direct measurements of stellar spin rates. In this pro-ceedings, we present results of a multisite photometric survey dedicated to the measurement of spin rates in the 30 Myr cluster NGC 3766. Inside the framework of the Monitor Project, the cluster was monitored during 2014 in the i-band by the Wide Field Imager at the MPG/ESO 2.2-m telescope. Data from Gaia-DR2 and griz Y photometry from DECam/CTIO were used to identify cluster members. We present spin rates measured for ∼200 cluster members.

2.
Nature ; 529(7584): 59-62, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26675732

RESUMO

Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Planetas , Água/análise , Júpiter , Pressão , Espectrofotometria Infravermelho , Telescópios , Temperatura
3.
Philos Trans A Math Phys Eng Sci ; 372(2014): 20130064, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24664910

RESUMO

Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the available data, and the requirements for future spectroscopic characterization of a set of Jupiter-class objects to test our physical and chemical understanding of these planets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...