Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mammal ; 104(6): 1205-1215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059010

RESUMO

Traditionally, researchers have assessed diet selection by comparing consumed versus available taxa. However, taxonomic assignment is probably irrelevant for predators, who likely base their selection on characteristics including prey size, habitat, or behavior. Here, we use an aquatic insectivore, the threatened Pyrenean Desman (Galemys pyrenaicus), as a model species to assess whether biological traits help unravel the criteria driving food and habitat preferences. We reanalyzed data from a previous taxonomy-based study of prey selection in two contrasting streams, one with excellent conservation status and the other affected by diversion for hydropower and forestry. Available and consumed prey were characterized according to nine biological traits, and diet selection was estimated by comparing availability-measured from Surber net samples, and consumption-analyzed by metabarcoding desman feces. Traits offered a biologically coherent image of diet and almost identical selection patterns in both streams, depicting a highly specialized rheophilic predator. Desmans positively selected prey with a preference for fast flow and boulder substrate, indicating their preferred riffle habitat. On the other hand, they positively selected prey with larger but not the largest potential size, living in the water column or the litter, and not inside sediments. They also chose agile prey, swimmers or prey attached to the substrate, prey with high body flexibility, and prey living exposed and clustered in groups. Overall, our results offer a picture of desman diet preference and point to biological traits as being better than taxonomic identity to describe the diet preference of consumers.


Tradicionalmente, los investigadores han estimado la selección de dieta comparando los taxones ingeridos con los disponibles. Sin embargo, la asignación taxonómica probablemente sea irrelevante para los depredadores, que probablemente basan su selección en características tales como el tamaño de presa, su hábitat o su comportamiento. Aquí, utilizamos como especie modelo un insectívoro acuático, el amenazado desmán ibérico (Galemys pyrenaicus), para evaluar si los rasgos biológicos ayudan a desvelar los criterios que rigen las preferencias de alimentos y de hábitat. Reanalizamos los datos de un estudio previo basado en taxonomía sobre la selección de presas de desmán en dos ríos diferentes, uno en excelente estado de conservación y el otro afectado por la derivación de agua para producción de energía hidroeléctrica y por actividades forestales. Se caracterizaron las presas disponibles y consumidas en función de nueve rasgos biológicos y se estimó la selección de dieta comparando la disponibilidad, medida a partir de muestras de redes Surber, y el consumo, determinado mediante metabarcoding de las heces del desmán. Los rasgos biológicos ofrecieron una imagen biológicamente coherente de la dieta y unos patrones de selección casi idénticos en ambos ríos, representando a un depredador reófilo altamente especializado. Los desmanes seleccionaron positivamente las presas con preferencia por corriente rápida y sustrato de bloques, indicando su preferencia de hábitat por los rápidos. Por otro lado, seleccionaron positivamente presas con tamaño potencial grande­pero no el mayor­, que vivían en la columna de agua o en la hojarasca, y no dentro de los sedimentos. También eligieron presas ágiles, presas nadadoras o adheridas al sustrato, presas con alta flexibilidad corporal y presas que viven expuestas y agrupadas. En general, nuestros resultados ofrecen una imagen de las preferencias tróficas del desmán y apuntan a que los rasgos biológicos de las presas describen las preferencias tróficas de los consumidores mejor que su identidad taxonómica.

2.
Sci Rep ; 13(1): 19576, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950015

RESUMO

Recent research has confirmed the efficiency of insectivorous bats as pest suppressors, underlining the ecological services they offer in agroecosystems. Therefore, some efforts try to enhance bat foraging in agricultural landscapes by acting upon environmental factors favouring them. In this study, we monitored a Miniopterus schreibersii colony, in the southern Iberian Peninsula. We intensively sampled their faeces and analysed them by metabarcoding to describe how the bent-winged bat diet would change with time, and to test whether their most-consumed prey would seasonally depend on different landscapes or habitats. Our results confirm that M. schreibersii are selective opportunist predators of moths, dipterans, mayflies, and other fluttering insects, shifting their diet to temporary peaks of prey availability in their foraging range, including both pest and non-pest insects. Supporting our hypothesis, throughout the year, M. schreibersii consume insects linked to diverse open habitats, including wetlands, grassland, diverse croplands, and woodland. The importance of each prey habitat varies seasonally, depending on their insect phenology, making bats indirectly dependent on a diverse landscape as their primary prey source. Bats' predation upon pest insects is quantitatively high, consuming around 1610 kg in 5 months, of which 1467 kg correspond to ten species. So, their suppression effect may be relevant, mainly in patchy heterogeneous landscapes, where bats' foraging may concentrate in successive outbursts of pests, affecting different crops or woodlands. Our results stress that to take advantage of the ecosystem services of bats or other generalist insectivores, keeping the environmental conditions they require to thrive, particularly a heterogeneous landscape within the colony's foraging area, is crucial.


Assuntos
Quirópteros , Ephemeroptera , Mariposas , Animais , Ecossistema , Insetos , Comportamento Predatório
3.
J Exp Biol ; 225(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36268785

RESUMO

Roosts are vital for the survival of many species, and how individuals choose one site over another is affected by various factors. In bats, for example, species may use stiff roosts such as caves or compliant ones such as leaves; each type requires not only specific morphological adaptations but also different landing manoeuvres. Selecting a suitable roost within those broad categories may increase landing performance, reducing accidents and decreasing exposure time to predators. We addressed whether bats select specific roost sites based on the availability of a suitable landing surface, which could increase landing performance. Our study focused on Spix's disc-winged bats (Thyroptera tricolor), a species known to roost within developing tubular leaves. As previous studies show that this species relies on the leaves' apex for safe landing and rapid post-landing settlement, we predicted that bats would prefer to roost in tubular structures with a longer apex and that landing would be consistently more effective on those leaves. Field observations showed that T. tricolor predominantly used two species for roosting, Heliconia imbricata and Calathea lutea, but they preferred roosting in the former. The main difference between these two plant species was the length of the leaf's apex (longer in H. imbricata). Experiments in a flight cage also showed that bats used more consistent approach and landing tactics when accessing leaves with a longer apex. Our results suggest that landing mechanics may strongly influence resource selection, especially when complex manoeuvres are needed to acquire those resources.


Assuntos
Quirópteros , Humanos , Animais , Cavernas , Folhas de Planta
5.
Nat Commun ; 11(1): 1154, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123172

RESUMO

Inferences of the interactions between species' ecological niches and spatial distribution have been historically based on simple metrics such as low-resolution dietary breadth and range size, which might have impeded the identification of meaningful links between niche features and spatial patterns. We analysed the relationship between dietary niche breadth and spatial distribution features of European bats, by combining continent-wide DNA metabarcoding of faecal samples with species distribution modelling. Our results show that while range size is not correlated with dietary features of bats, the homogeneity of the spatial distribution of species exhibits a strong correlation with dietary breadth. We also found that dietary breadth is correlated with bats' hunting flexibility. However, these two patterns only stand when the phylogenetic relations between prey are accounted for when measuring dietary breadth. Our results suggest that the capacity to exploit different prey types enables species to thrive in more distinct environments and therefore exhibit more homogeneous distributions within their ranges.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Quirópteros/fisiologia , Comportamento Predatório , Fenômenos Fisiológicos da Nutrição Animal/genética , Animais , Quirópteros/classificação , Código de Barras de DNA Taxonômico , Dípteros , Ecossistema , Europa (Continente) , Fezes , Lepidópteros , Modelos Biológicos , Filogeografia
6.
PeerJ ; 7: e7169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316870

RESUMO

Outbreaks of the processionary moth Thaumetopoea pityocampa (Denis & Schiffermüller, 1775), a forest pest from the Palearctic, are thought to induce a behavioral response of bats, but up to now the moth has been seldom identified as bats' prey. Studies on bat diets suggest moths with cyclical outbreaks attract a wide array of bat species from different foraging guilds. We test whether bats feed upon T. pityocampa in the Iberian Peninsula irrespective of the predator's ecological and morphological features. We found that seven out of ten bat species belonging to different foraging guilds contained T. pityocampa DNA in their faeces and no difference was found in the foraging frequency among foraging guilds. A different size of the typical prey or the lack of fondness for moths can explain the absence of the pest in some bat species. Moreover, the intraspecific foraging frequency of T. pityocampa also changed with the sampling site likely representing differential availability of the moth. Lack of information on flight and dispersal behavior or the tympanate nature of the adult moth complicates understanding how different foraging guilds of bats prey upon the same prey. Our data suggests that T. pityocampa is a remarkable food source for many thousands of individual bats in the study area and we anticipate that more bats besides the species studied here are consuming this moth.

7.
PLoS One ; 14(7): e0219265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318887

RESUMO

Herbivorous arthropods cause immense damage in crop production annually. Consumption of these pests by insectivorous animals is of significant importance to counteract their adverse effects. Insectivorous bats are considered amongst the most voracious predators of arthropods, some of which are known crop pests. In vineyard-dominated Mediterranean agroecosystems, several crops are damaged by the attack of insect pests. In this study we aimed 1) to explore the diet and pest consumption of the lesser horseshoe bat Rhinolophus hipposideros and 2) analyse whether the composition of pest species in its diet changes throughout the season. We employed a dual-primer DNA metabarcoding analysis of DNA extracted from faeces collected in three bat colonies of a wine region in Southwestern Europe during the whole active period of most pest species. Overall, 395 arthropod prey species belonging to 11 orders were detected; lepidopterans and dipterans were the most diverse orders in terms of species. Altogether, 55 pest species were identified, 25 of which are known to cause significant agricultural damage and 8 are regarded as pests affecting grapevines. The composition of pest species in faeces changed significantly with the season, thus suggesting several periods should be sampled to assess the pest consumption by bats. As a whole, the results imply that R. hipposideros acts as a suppressor of a wide array of agricultural pests in Mediterranean agroecosystems. Therefore, management measures favouring the growth of R. hipposideros populations should be considered.


Assuntos
Quirópteros/fisiologia , Controle Biológico de Vetores , Vitis/parasitologia , Animais , Fezes , Especificidade da Espécie
8.
J Anim Ecol ; 88(10): 1587-1600, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310329

RESUMO

The degree of trophic specialization determines the ability of predators to cope with changing foraging conditions, but in predators that prey on hundreds of species it is challenging to assess, especially when prey identity varies among predator individuals and across space and time. Here, we test the hypothesis that a bat species foraging on flying insects like moths will show ample flexibility in trophic niche, and this irrespective of phylogenetic relationships among moths, so as to cope with a high diversity of prey types that vary across seasons. We predict that individual bats will show functional dietary differences consistent with energetic requirements and hunting skills. We used DNA metabarcoding to determine the diet of 126 Mediterranean horseshoe bats (Rhinolophus euryale) from two different sites during three seasons. Simultaneously, we measured moth availability and characterized the traits of 290 moth taxa. Next, we explored the relationship between phylogeny and traits of all consumed and available moth taxa. Finally, we assessed the relationship between individual traits of bats and traits related to prey profitability, for which we used the RLQ and fourth-corner statistical techniques. Seasonality was the main factor explaining the functional dietary variation in adult bats, with moths consumed irrespective of their phylogenetic relationships. While adults consumed moths with a broad range in wing loading, body mass and echolocation detection ability, juveniles consumed slower, smaller and lighter moths, which suggests that young individuals may undergo some fitness gain and/or psychomotor learning process during which they would acquire more effective foraging skills. Our approach revealed a degree of functional flexibility in the trophic niche previously unknown for an insectivorous bat. Rhinolophus euryale consumed a wide variety of moth taxa differing in profitability throughout seasons and between ontogenetic stages. We showed the validity of trait-based approaches to gain new insights in the trophic specialization of predators consuming hundreds of species of prey.


Assuntos
Quirópteros , Ecolocação , Mariposas , Animais , Dieta , Filogenia , Comportamento Predatório
9.
PLoS One ; 14(7): e0220081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339936

RESUMO

Knowledge on the trophic interactions among predators and their prey is important in order to understand ecology and behaviour of animals. Traditionally studies on the diet composition of insectivorous bats have been based on the morphological identification of prey remains, but the accuracy of the results has been hampered due to methodological limitations. Lately, the DNA metabarcoding and High Throughput Sequencing (HTS) techniques have changed the scene since they allows prey identification to the species level, ultimately giving more precision to the results. Nevertheless, the use of one single primer set to amplify faecal DNA produces biases in the assessed dietary composition. Three horseshoe bats overlap extensively in their distribution range in Europe: Rhinolophus euryale, R. hipposideros and R. ferrumequinum. In order to achieve the deepest insight on their prey list we combined two different primers. Results showed that the used primers were complementary at the order and species levels, only 22 out of 135 prey species being amplified by both. The most frequent prey of R. hipposideros belonged to Diptera and Lepidoptera, to Lepidoptera in R. euryale, and Lepidoptera, Diptera and Coleoptera in R. ferrumequinum. The three bats show significant resource partitioning, since their trophic niche overlap is not higher than 34%. Our results confirm the importance of combining complementary primers to describe the diet of generalist insectivorous bats with amplicon metabarcoding techniques. Overall, each primer set showed a subset of the prey composition, with a small portion of the total prey being identified by both of them. Therefore, each primer presented a different picture of the niche overlap among the three horseshoe bats due to their taxonomic affinity.


Assuntos
Quirópteros/fisiologia , Código de Barras de DNA Taxonômico/métodos , Dieta , Genes de Insetos , Metagenoma , Metagenômica/métodos , Animais , Besouros/genética , Primers do DNA/química , Primers do DNA/genética , Dípteros/genética , Cadeia Alimentar , Lepidópteros/genética
10.
PLoS One ; 13(12): e0206310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517109

RESUMO

Visual attractiveness and rarity often results in large carnivores being adopted as flagship species for stimulating conservation awareness. Their hunting behaviour and prey selection can affect the population dynamics of their prey, which in turn affects the population dynamics of these large carnivores. Therefore, our understanding of their trophic ecology and foraging strategies is important for predicting their population dynamics and consequently for developing effective conservation programs. Here we concentrate on an endangered species of carnivores, the snow leopard, in the Himalayas. Most previous studies on snow leopard diet lack information on prey availability and/or did not genetically check, whether the identification of snow leopard scats is correct, as their scats are similar to those of other carnivores. We studied the prey of snow leopard in three Himalayan regions in Nepal (Sagarmatha National Park (SNP), Lower Mustang (LM) and Upper Manang (UM) in the Annapurna Conservation Area, during winter and summer in 2014-2016. We collected 268 scats along 139.3 km linear transects, of which 122 were genetically confirmed to belong to snow leopard. Their diet was identified by comparing hairs in scats with our reference collection of the hairs of potential prey. We determined prey availability using 32-48 camera-traps and 4,567 trap nights. In the SNP, the most frequent prey in snow leopard faeces was the Himalayan tahr in both winter and summer. In LM and UM, its main prey was blue sheep in winter, but yak and goat in summer. In terms of relative biomass consumed, yak was the main prey everywhere in both seasons. Snow leopard preferred large prey and avoided small prey in summer but not in winter, with regional differences. It preferred domestic to wild prey only in winter, and in SNP. Unlike most other studies carried out in the same area, our study uses genetic methods for identifying the source of the scat. Studies solely based on visual identification of samples may be strongly biased. Diet studies based on frequency of occurrence of prey tend to overestimate the importance of small prey, which may be consumed more often, but contribute less energy than large prey. However, even assessments based on prey biomass are unlikely to be accurate as we do not know whether the actual size of the prey consumed corresponds to the average size used to calculate the biomass eaten. For example, large adults may be too difficult to catch and therefore mostly young animals are consumed, whose weight is much lower. We show that snow leopard consumes a diverse range of prey, which varies both regionally and seasonally. We conclude that in order to conserve snow leopards it is also necessary to conserve its main wild species of prey, which will reduce the incidence of losses of livestock.


Assuntos
Carnivoridade/fisiologia , Felidae/fisiologia , Animais , Feminino , Masculino , Nepal
11.
PLoS One ; 13(12): e0208986, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550548

RESUMO

Molecular techniques allow non-invasive dietary studies from faeces, providing an invaluable tool to unveil ecological requirements of endangered or elusive species. They contribute to progress on important issues such as genomics, population genetics, dietary studies or reproductive analyses, essential knowledge for conservation biology. Nevertheless, these techniques require general methods to be tailored to the specific research objectives, as well as to substrate- and species-specific constraints. In this pilot study we test a range of available primers to optimise diet analysis from metabarcoding of faeces of a generalist aquatic insectivore, the endangered Pyrenean desman (Galemys pyrenaicus, É. Geoffroy Saint-Hilaire, 1811, Talpidae), as a step to improve the knowledge of the conservation biology of this species. Twenty-four faeces were collected in the field, DNA was extracted from them, and fragments of the standard barcode region (COI) were PCR amplified by using five primer sets (Brandon-Mong, Gillet, Leray, Meusnier and Zeale). PCR outputs were sequenced on the Illumina MiSeq platform, sequences were processed, clustered into OTUs (Operational Taxonomic Units) using UPARSE algorithm and BLASTed against the NCBI database. Although all primer sets successfully amplified their target fragments, they differed considerably in the amounts of sequence reads, rough OTUs, and taxonomically assigned OTUs. Primer sets consistently identified a few abundant prey taxa, probably representing the staple food of the Pyrenean desman. However, they differed in the less common prey groups. Overall, the combination of Gillet and Zeale primer sets were most cost-effective to identify the widest taxonomic range of prey as well as the desman itself, which could be further improved stepwise by adding sequentially the outputs of Leray, Brandon-Mong and Meusnier primers. These results are relevant for the conservation biology of this endangered species as they allow a better characterization of its food and habitat requirements.


Assuntos
Código de Barras de DNA Taxonômico , Primers do DNA/genética , Dieta , Eulipotyphla/classificação , Fezes , Animais , Espécies em Perigo de Extinção , Eulipotyphla/genética
12.
Viruses ; 10(8)2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127258

RESUMO

In the context of long-term screening for viruses on Western Palaearctic bats, we tested for the presence of adenovirus 1392 oropharyngeal swabs and 325 stool samples taken from 27 bat species. Adenoviruses were detected in 12 species of the Vespertilionidae and the Rhinolophidae families. Fifty positive respiratory and 26 positive stool samples were studied. Phylogenetic analyses of partial hexon protein and partial DNA-dependent DNA polymerase genes indicate that all these bat adenoviruses belong to the genus Mastadenovirus but without constituting a monophyletic cluster. According to genetic identities, the new groups are distinct to the previously described Bat mastadenovirus A and B species and contribute with potentially new members. Our data support that diversity of bat mastadenovirus is host-dependent and increase the knowledge of potentially pathogenic virus from bats. Due to the active role of bats as viral reservoirs, the characterization of these viruses is relevant for Public Health.


Assuntos
Infecções por Adenoviridae/veterinária , Quirópteros/virologia , Genoma Viral , Mastadenovirus/genética , Filogenia , Proteínas Virais/genética , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , África do Norte/epidemiologia , Animais , Ásia/epidemiologia , Proteínas do Capsídeo/genética , DNA Polimerase Dirigida por DNA/genética , Europa (Continente)/epidemiologia , Fezes/virologia , Expressão Gênica , Mastadenovirus/classificação , Mastadenovirus/isolamento & purificação , Orofaringe/virologia , Filogeografia
13.
Mol Ecol ; 27(5): 1273-1283, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29411450

RESUMO

Niche partitioning through foraging is a mechanism likely involved in facilitating the coexistence of ecologically similar and co-occurring animal species by separating their use of resources. Yet, this mechanism is not well understood in flying insectivorous animals. This is particularly true of bats, where many ecologically similar or cryptic species coexist. The detailed analysis of the foraging niche in sympatric, cryptic sibling species provides an excellent framework to disentangle the role of specific niche factors likely involved in facilitating coexistence. We used DNA metabarcoding to determine the prey species consumed by a population of sympatric sibling Rhinolophus euryale and Rhinolophus mehelyi whose use of habitat in both sympatric and allopatric ranges has been well established through radio tracking. Although some subtle dietary differences exist in prey species composition, the diet of both bats greatly overlapped (Ojk  = 0.83) due to the consumption of the same common and widespread moths. Those dietary differences we did detect might be related to divergences in prey availabilities among foraging habitats, which prior radio tracking on the same population showed are differentially used and selected when both species co-occur. This minor dietary segregation in sympatry may be the result of foraging on the same prey-types and could contribute to reduce potential competitive interactions (e.g., for prey, acoustic space). Our results highlight the need to evaluate the spatial niche dimension in mediating the co-occurrence of similar insectivorous bat species, a niche factor likely involved in processes of bat species coexistence.


Assuntos
Quirópteros/genética , Código de Barras de DNA Taxonômico , Animais , Quirópteros/fisiologia , Demografia , Dieta , Ecossistema , Comportamento Alimentar , Mariposas/classificação , Dinâmica Populacional , Comportamento Predatório , Especificidade da Espécie
14.
PLoS One ; 11(12): e0169153, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28036408

RESUMO

A thorough search for bat herpesviruses was carried out in oropharyngeal samples taken from most of the bat species present in the Iberian Peninsula from the Vespertilionidae, Miniopteridae, Molossidae and Rhinolophidae families, in addition to a colony of captive fruit bats from the Pteropodidae family. By using two degenerate consensus PCR methods targeting two conserved genes, distinct and previously unrecognized bat-hosted herpesviruses were identified for the most of the tested species. All together a total of 42 potentially novel bat herpesviruses were partially characterized. Thirty-two of them were tentatively assigned to the Betaherpesvirinae subfamily while the remaining 10 were allocated into the Gammaherpesvirinae subfamily. Significant diversity was observed among the novel sequences when compared with type herpesvirus species of the ICTV-approved genera. The inferred phylogenetic relationships showed that most of the betaherpesviruses sequences fell into a well-supported unique monophyletic clade and support the recognition of a new betaherpesvirus genus. This clade is subdivided into three major clades, corresponding to the families of bats studied. This supports the hypothesis of a species-specific parallel evolution process between the potentially new betaherpesviruses and their bat hosts. Interestingly, two of the betaherpesviruses' sequences detected in rhinolophid bats clustered together apart from the rest, closely related to viruses that belong to the Roseolovirus genus. This suggests a putative third roseolo lineage. On the contrary, no phylogenetic structure was detected among several potentially novel bat-hosted gammaherpesviruses found in the study. Remarkably, all of the possible novel bat herpesviruses described in this study are linked to a unique bat species.


Assuntos
Betaherpesvirinae/crescimento & desenvolvimento , Betaherpesvirinae/genética , Quirópteros/virologia , DNA Viral/genética , Gammaherpesvirinae/classificação , Gammaherpesvirinae/genética , Animais , Sequência de Bases , Betaherpesvirinae/classificação , Betaherpesvirinae/isolamento & purificação , Evolução Biológica , Gammaherpesvirinae/isolamento & purificação , Variação Genética/genética , Filogenia , Reação em Cadeia da Polimerase , Portugal , Roseolovirus/classificação , Roseolovirus/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Espanha
15.
PLoS One ; 11(12): e0167164, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27973529

RESUMO

Behavioral plasticity is a key feature allowing animals to broaden their dietary niche when novel food resources become available, and long-fingered bats provide an appropriate model system to study the underpinnings of behavioral plasticity, since although generally being an insectivorous species, some individuals have been reported to catch fish. Aiming to get insight into the origin of fishing behavior in long-fingered bats, we studied in the field the differences in sensorial and mechanical reactions to insect-like (stationary) and fish-like (temporary) prey stimuli between well-known piscivorous and strictly insectivorous individuals. Both piscivorous and insectivorous individuals exhibited a qualitatively similar reaction to temporary target stimuli (longer and deeper dips and terminal echolocation phase skewed towards buzz I compared to stationary stimuli). Nevertheless, the quantitative differences observed in the sensorial and mechanical features (the intensity of the shift was significantly greater in piscivorous than in insectivorous individuals) show that piscivorous individuals have honed their capture technique likely enhancing the fishing success. Thus, our results suggest that the fishing technique was developed from a primary reaction shared by all long-fingered bats. All individuals seem to be mechanically and sensorially adapted to detect and capture fish, although under appropriate environmental conditions, they would further improve their technique by experience and/or social learning.


Assuntos
Quirópteros/fisiologia , Comportamento Predatório , Animais , Ecolocação , Comportamento Alimentar , Peixes , Voo Animal , Aprendizagem , Análise de Componente Principal , Comportamento Social , Espanha
16.
PLoS One ; 11(10): e0162712, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27706168

RESUMO

Mountain environments, characterized by high levels of endemism, are at risk of experiencing significant biodiversity loss due to current trends in global warming. While many acknowledge their importance and vulnerability, these ecosystems still remain poorly studied, particularly for taxa that are difficult to sample such as bats. Aiming to estimate the amount of cryptic diversity among bats of a Neotropical montane cloud forest in Talamanca Range-south-east Central America-, we performed a 15-night sampling campaign, which resulted in 90 captured bats belonging to 8 species. We sequenced their mitochondrial cytochrome c oxidase subunit I (COI) and screened their inter- and intraspecific genetic variation. Phylogenetic relations with conspecifics and closely related species from other geographic regions were established using Maximum Likelihood and Bayesian inference methods, as well as median-joining haplotype networks. Mitochondrial lineages highly divergent from hitherto characterized populations (> 9% COI dissimilarity) were found in Myotis oxyotus and Hylonycteris underwoodi. Sturnira burtonlimi and M. keaysi also showed distinct mitochondrial structure with sibling species and/or populations. These results suggest that mountains in the region hold a high degree of endemicity potential that has previously been ignored in bats. They also warn of the high extinction risk montane bats may be facing due to climatic change, particularly in isolated mountain systems like Talamanca Range.


Assuntos
Biodiversidade , Quirópteros/metabolismo , Animais , Teorema de Bayes , América Central , Quirópteros/classificação , Quirópteros/genética , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Florestas , Haplótipos , Funções Verossimilhança , Mitocôndrias/enzimologia , Filogenia , Análise de Sequência de DNA
17.
Sci Rep ; 5: 12392, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26196094

RESUMO

Several insectivorous bats have included fish in their diet, yet little is known about the processes underlying this trophic shift. We performed three field experiments with wild fishing bats to address how they manage to discern fish from insects and adapt their hunting technique to capture fish. We show that bats react only to targets protruding above the water and discern fish from insects based on prey disappearance patterns. Stationary fish trigger short and shallow dips and a terminal echolocation pattern with an important component of the narrowband and low frequency calls. When the fish disappears during the attack process, bats regulate their attack increasing the number of broadband and high frequency calls in the last phase of the echolocation as well as by lengthening and deepening their dips. These adjustments may allow bats to obtain more valuable sensorial information and to perform dips adjusted to the level of uncertainty on the location of the submerged prey. The observed ultrafast regulation may be essential for enabling fishing to become cost-effective in bats, and demonstrates the ability of bats to rapidly modify and synchronise their sensorial and motor features as a response to last minute stimulus variations.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Comportamento Predatório/fisiologia , Vocalização Animal/fisiologia , Animais , Dieta , Peixes , Voo Animal/fisiologia , Insetos/fisiologia , Incerteza
18.
Front Zool ; 11(1): 77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389444

RESUMO

Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16°C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.

19.
J Exp Biol ; 217(Pt 18): 3318-25, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25013107

RESUMO

Formerly thought to be a strictly insectivorous trawling bat, recent studies have shown that Myotis capaccinii also preys on fish. To determine whether differences exist in bat flight behaviour, prey handling and echolocation characteristics when catching fish and insects of different size, we conducted a field experiment focused on the last stage of prey capture. We used synchronized video and ultrasound recordings to measure several flight and dip features as well as echolocation characteristics, focusing on terminal buzz phase I, characterized by a call rate exceeding 100 Hz, and buzz phase II, characterized by a drop in the fundamental well below 20 kHz and a repetition rate exceeding 150 Hz. When capturing insects, bats used both parts of the terminal phase to the same extent, and performed short and superficial drags on the water surface. In contrast, when preying on fish, buzz I was longer and buzz II shorter, and the bats made longer and deeper dips. These variations suggest that lengthening buzz I and shortening buzz II when fishing is beneficial, probably because buzz I gives better discrimination ability and the broader sonar beam provided by buzz II is useless when no evasive flight of the prey is expected. Additionally, bats continued emitting calls beyond the theoretical signal-overlap zone, suggesting that they might obtain information even when they have surpassed that threshold, at least initially. This study shows that M. capaccinii can regulate the temporal components of its feeding buzzes and modify prey capture technique according to the target.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Peixes/anatomia & histologia , Insetos/anatomia & histologia , Comportamento Predatório/fisiologia , Animais , Tamanho Corporal
20.
PLoS One ; 8(11): e80163, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312200

RESUMO

The long-fingered bat Myotis capaccinii is a European trawling bat reported to feed on fish in several Mediterranean locations, but the ecological circumstances of this behavior have not yet been studied. To elucidate the importance of fishing in this bat's diet, we evaluated the frequency and seasonal variation of fish remains in 3,000 fecal pellets collected from M. capaccinii at a nursery roost in Dénia (Eastern Iberian Peninsula) in 2008, 2009, and 2010. Fish consumption occurred evenly throughout the year. All otoliths found in feces were identified as belonging to the surface-feeding fish Gambusia holbrooki. Measuring otoliths, we estimated that the mean size of consumed fish was significantly smaller than the mean measured for available fish, suggesting that the long-fingered bat's relatively small body may constrain its handling of larger prey. Of note, one bat had eaten 15 fish, showing that fish may be a locally or seasonally important trophic resource for this species. By capturing 15 bats and radio-tracking the four with the most fish remains in their droppings, we also identified fishing areas, including a single fishing ground comprising several ponds within a golf course. Ponds hold a high density of G. holbrooki, suggesting that the amount of fish at the water surface may be the principal factor triggering fishing. The observed six-fold increase in percentage of consumed fish across the study period may be related to recent pond-building in the area. We discuss whether this quick behavioral response is a novel feature of M. capaccinii or an intrinsic feature that has erupted and faded locally along the species' history.


Assuntos
Quirópteros/fisiologia , Comportamento Alimentar , Peixes , Comportamento Predatório , Animais , Comportamento Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...