Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10337, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710802

RESUMO

Infectious diseases have long been a shaping force in human history, necessitating a comprehensive understanding of their dynamics. This study introduces a co-evolution model that integrates both epidemiological and evolutionary dynamics. Utilizing a system of differential equations, the model represents the interactions among susceptible, infected, and recovered populations for both ancestral and evolved viral strains. Methodologically rigorous, the model's existence and uniqueness have been verified, and it accommodates both deterministic and stochastic cases. A myriad of graphical techniques have been employed to elucidate the model's dynamics. Beyond its theoretical contributions, this model serves as a critical instrument for public health strategy, particularly predicting future outbreaks in scenarios where viral mutations compromise existing interventions.


Assuntos
Processos Estocásticos , Humanos , Sistema Imunitário/virologia , Evolução Molecular , Vírus/genética , Vírus/imunologia , Evolução Biológica
2.
Science ; 380(6652): 1331, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37384696
3.
PeerJ ; 11: e14832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883058

RESUMO

Quinoa (Chenopodium quinoa) is a grain-like, genetically diverse, highly complex, nutritious, and stress-tolerant food that has been used in Andean Indigenous cultures for thousands of years. Over the past several decades, numerous nutraceutical and food companies are using quinoa because of its perceived health benefits. Seeds of quinoa have a superb balance of proteins, lipids, carbohydrates, saponins, vitamins, phenolics, minerals, phytoecdysteroids, glycine betaine, and betalains. Quinoa due to its high nutritional protein contents, minerals, secondary metabolites and lack of gluten, is used as the main food source worldwide. In upcoming years, the frequency of extreme events and climatic variations is projected to increase which will have an impact on reliable and safe production of food. Quinoa due to its high nutritional quality and adaptability has been suggested as a good candidate to offer increased food security in a world with increased climatic variations. Quinoa possesses an exceptional ability to grow and adapt in varied and contrasting environments, including drought, saline soil, cold, heat UV-B radiation, and heavy metals. Adaptations in salinity and drought are the most commonly studied stresses in quinoa and their genetic diversity associated with two stresses has been extensively elucidated. Because of the traditional wide-ranging cultivation area of quinoa, different quinoa cultivars are available that are specifically adapted for specific stress and with broad genetic variability. This review will give a brief overview of the various physiological, morphological and metabolic adaptations in response to several abiotic stresses.


Assuntos
Chenopodium quinoa , Adaptação Psicológica , Vitaminas , Aclimatação , Betaína
4.
Clin Chim Acta ; 536: 77-85, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165861

RESUMO

BACKGROUND: Owing to the atherogenic properties, low density lipoprotein cholesterol (LDL-C) is the primary target for treatment and diagnosis of cardiovascular diseases (CVDs), hence accurate measurement of LDL-C is critical. Despite the availability of direct measurement assays for LDL-C, it is routinely calculated by Friedewald equation in clinical settings in Pakistan mostly due to financial constraints. However, the validity of this equation is impacted by several factors, therefore several other equations have been developed for the calculation of LDL-C. MATERIALS AND METHODS: LDL-C of 39,385 individuals measured directly by homogenous assays (dLDL) was compared with LDL-C calculated by thirteen equations (cLDL-C). Stratifications based on different lipids i.e., triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL) were made to check the validity of these equations across all ranges of lipid profile. The correlation and median difference between dLDL and cLDL-C was statistically analyzed. RESULTS: Overall Teerakanchana equation displayed a strong positive correlation (ρ = 0.967) and least median difference (-8.81) with dLDL, followed by Martin equation (ρ = 0.967). For higher TG ranges (>500 mg/dL), Teerakanchana equation had the least median difference (1.31) and a strong correlation (ρ = 0.800). CONCLUSION: Our data suggest that Teerakanchana equation may be employed as an alternative to Friedewald equation for Pakistani population.


Assuntos
Hipertrigliceridemia , LDL-Colesterol , Humanos , Lipoproteínas HDL , Paquistão , Triglicerídeos
5.
J Biomed Nanotechnol ; 18(4): 1180-1186, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35854454

RESUMO

PEGylated graphene oxide nanoparticle (PEG-nGO) has been commonly used as a carrier for therapeutic drugs and vaccines, because of its unique properties, such as high solubility, more stability and increased biocompatibility in physiological solutions. This study aimed to examine the DNA damage and neurotoxicity in young mice after up to 4 h of the treatment with PEG-nGO. A single dose (5 mg/kg) of intravenous injection was administered through the tail vein of adult mice. Total genomic DNA was isolated from the control and treated animals after 1 h, 2 h, and 4 h of treatments and examined for DNA damage by diphenyl assay, DNA fragmentation Assay, and FTIR (Fourier transform infrared) techniques. DNA damage studies indicated DNA fragmentation after 1 h and 2 h of treatments followed by recovery at 4 h. FTIR analysis further supported these results and showed a detailed molecular effect of the treatments that caused single and double-strand DNA breaks at 1 to 2 h after the treatments and indicated DNA damage response and recovery at 4 h. Histopathology showed neuronal apoptosis and lesions in the brain after 1 to 2 h and invasion of inflammatory response and chromatolysis after 4 h. PEG-nGO caused immediate DNA damage and cytotoxicity to the brain and its future use as a drug carrier should be considered with caution.


Assuntos
Grafite , Nanopartículas , Animais , Dano ao DNA , Grafite/toxicidade , Camundongos , Nanopartículas/toxicidade , Polietilenoglicóis/toxicidade
6.
Sensors (Basel) ; 21(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209484

RESUMO

Coronavirus (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as a deadly pandemic. The genomic analysis of SARS-CoV-2 is performed using a reverse transcription-polymerase chain reaction (RT-PCR) technique for identifying viral ribonucleic acid (RNA) in infected patients. However, the RT-PCR diagnostic technique is manually laborious and expensive; therefore, it is not readily accessible in every laboratory. Methodological simplification is crucial to combat the ongoing pandemic by introducing quick, efficient, and affordable diagnostic methods. Here, we report how microcantilever sensors offer promising opportunities for rapid COVID-19 detection. Our first attempt was to capture the single-stranded complementary DNA of SARS-CoV-2 through DNA hybridization. Therefore, the microcantilever surface was immobilized with an oligonucleotide probe and detected using complementary target DNA hybridization by a shift in microcantilever resonance frequency. Our results show that microcantilever sensors can discriminate between complementary and noncomplementary target DNA on a micro to nanoscale. Additionally, the microcantilever sensors' aptitude toward partial complementary DNA determines their potential to identify new variants of coronavirus. Therefore, microcantilever sensing could be a vital tool in the effort to extinguish the spreading COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , DNA Complementar , Humanos , Hibridização de Ácido Nucleico , Pandemias , RNA Viral
7.
Bioengineered ; 12(1): 2288-2298, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34096454

RESUMO

Colorectal cancer (CRC) is graded as one of the most common cancer. It accounts for the second leading cause of cancer deaths worldwide. The present study intends to investigate the role and importance of different biochemical variables in the development of colorectal cancer.In this cross-sectional study we recruited ninety-one patients diagnosed with colorectal cancer and fifty-three age-sex matched controls from June 2017 to June 2018. Different variables i.e. SOD, GSH, CAT, MDA, TGF, VEGF, TNF, ILs, MMPs, etc., were estimated with the help of their respective methods. Our findings suggest a significant increase in the levels of different inflammatory and stress-related markers. The NFκB, TGF-ß, VEGFß, 8OHdG, IsoP-2α were significantly found to be increased in patients with colon cancer (0.945 ± 0.067 µg/ml, 18.59 ± 1.53 pg/ml, 99.35 ± 4.29 pg/ml, 21.26 ± 1.29 pg/ml, 102.25 ± 4.25 pg/ml) as compared to controls (0.124 ± 0.024 µg/ml, 8.26 ± 0.88 pg/ml, 49.58 ± 2.62 pg/ml, 0.93 ± 0.29 pg/ml, 19.65 ± 3.19 pg/ml). Notably, the levels of different antioxidants were shown to be significantly lower in patients of colon cancer. The present study concluded that excessive oxidative stress and lipid peroxidation result in a decrease in the antioxidative capacity of cells which may influence diverse signaling cascades including NF-KB, which results in DNA modification and gene transcription that ultimately involved in the progression of colon cancer.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais , Antioxidantes/análise , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Estudos Transversais , Citocinas/sangue , Progressão da Doença , Humanos , Inflamação/metabolismo , Malondialdeído/sangue , Estresse Oxidativo/fisiologia
8.
Diabetes ; 69(7): 1424-1438, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32349990

RESUMO

Monogenic forms of obesity have been identified in ≤10% of severely obese European patients. However, the overall spectrum of deleterious variants (point mutations and structural variants) responsible for childhood severe obesity remains elusive. In this study, we genetically screened 225 severely obese children from consanguineous Pakistani families through a combination of techniques, including an in-house-developed augmented whole-exome sequencing method (CoDE-seq) that enables simultaneous detection of whole-exome copy number variations (CNVs) and point mutations in coding regions. We identified 110 (49%) probands carrying 55 different pathogenic point mutations and CNVs in 13 genes/loci responsible for nonsyndromic and syndromic monofactorial obesity. CoDE-seq also identified 28 rare or novel CNVs associated with intellectual disability in 22 additional obese subjects (10%). Additionally, we highlight variants in candidate genes for obesity warranting further investigation. Altogether, 59% of cases in the studied cohort are likely to have a discrete genetic cause, with 13% of these as a result of CNVs, demonstrating a remarkably higher prevalence of monofactorial obesity than hitherto reported and a plausible overlapping of obesity and intellectual disabilities in several cases. Finally, inbred populations with a high prevalence of obesity provide unique, genetically enriched material in the quest of new genes/variants influencing energy balance.


Assuntos
Obesidade Mórbida/genética , Obesidade Infantil/genética , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Leptina/genética , Masculino , Mutação , Obesidade Mórbida/epidemiologia , Obesidade Mórbida/etiologia , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Prevalência , Receptor Tipo 4 de Melanocortina/genética , Receptores para Leptina/genética , Adulto Jovem
9.
Sci Rep ; 9(1): 18906, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827196

RESUMO

Seaweeds are a group of marine multicellular algae; the presence of antioxidant phytochemical constituents in Seaweed Chaetomorpha sp. extracts has received attention for their role in the prevention of human diseases. This study explores the phytochemical constituents, antioxidant, and anticancer properties of the Cladophoraceae, Chaetomorpha sp. Energy dispersive x-ray spectroscopy (EDX), and Gas chromatography-mass spectrometry (GC/MS) were performed to study the chemical structure and chemical formula. Different concentrations of ethanol and aqueous extracts of Chaetomorpha were used to estimate antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and total flavonoid, phenolic, and tannins content assays. Anti-tumor activity against breast cancer cell lines (MCF-7 and MDA-MB-231) was assessed by 3-(4,5-Dimethylthiazol-2-cyl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. The EDX analysis indicated the presence of oxygen, silicon, and calcium as dominant elements. Antioxidant assays indicated that the ethanol extracts of Chaetomorpha consisted of a total of 189.14 ± 0.99 mg QE/g flavonoid content, 21.92 ± 0.43 mg GAE/g phenolic content and 21.81 ± 0.04 mg GAE/g tannins content. The DPPH radical scavenging assay exhibited higher antioxidant activity IC50 (9.41 ± 0.54 mg/mL) in the ethanol extract. Moreover, it showed high anticancer activity by growth inhibition in the MDA-MB-231 breast cancer cell line and low IC50 (225.18 ± 0.61 µg/mL). GC/MS analysis revealed the presence of Dichloracetic acid (DCA) as the active antitumor constituent of Chaetomorpha sp.; other anticancer compounds identified were Oximes and L-α-Terpinol. The results revealed that the type of Chaetomorpha sp. studied here possesses very unique and novel constituents and active potent antitumor chemical constituents and it can act as a promising antioxidant and anticancer agent for future applications in pharmaceutical industries.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Clorófitas/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Humanos , Compostos Fitoquímicos/análise
10.
Beilstein J Nanotechnol ; 10: 901-911, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165017

RESUMO

Oxidative stress (OS) plays an important role in the pathology of certain human diseases. Scientists have developed great interest regarding the determination of oxidative stress caused after the administration of nano-graphene composites (PEG-nGO). Graphene oxide sheets (GOS) were synthesized via a modified Hummer's method and were characterized by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV), and transmission electron microscopy (TEM). The method of Zhang was adopted for cracking of GOS. Then nano-graphene oxide was PEGylated with polyethylene glycol (PEG). PEGylation of nGO was confirmed by Fourier-transform infrared spectroscopy (FTIR), UV spectroscopy and TEM. The average size distribution of nGO and PEG-nGO was determined by using dynamic light scattering (DLS). Subsequently, an in vivo study measuring a marker for oxidative stress, namely lipid peroxides, as well as antioxidant agents, including catalase, superoxide dismutase, glutathione, and glutathione S-transferase was conducted. A comparison at different intervals of time after the administration of a dose (5 mg/kg) of PEG-nGO was carried out. An increase in free radicals and a decrease in free radical scavenging enzymes in organs were observed. Our results indicated that the treatment with PEG-nGO caused an increased OS to the organs in the first few hours of treatment. However, the liver completely recovered from the OS after 4 h. Brain, heart and kidneys showed an increased OS even after 4 h. In conclusion increased OS induced by PEG-nGO could be detrimental to brain, heart and kidneys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...