Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 13(2): e4598, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789168

RESUMO

Drosophila melanogaster is a classic model organism to study gene function as well as toxicological effects. To study gene function, the expression of a particular gene of interest is disrupted by using the widely explorable Drosophila genetic toolkit, whereas to study toxicological effects the flies are exposed to a particular toxicant through diet. These experiments often require the quantification of lethality from embryonic to adult stages, as well as the assessment of the life span in order to check the role of the gene/toxicant of interest in Drosophila. Here, we propose an experimental protocol that enables a consistent and rigorous assessment of lethality and life span of cadmium chloride (CdCl2)-exposed or genetically perturbed flies [downregulation and overexpression of the cytosolic Cu, Zn superoxide dismutase (SOD1) gene], consecutively. The protocol insists upon the requirement of one single experimental setup that is unique, distinctive, and cost-effective as it engages minimal laboratory equipment and resources. The described methods lead to the smooth observation of the embryos, their successive stagewise transition, and life span of the adult flies post eclosion. Additionally, these methods also facilitate the assessment of crawling and climbing behavioral parameters of the larvae and adults, respectively, and allow the calculation of lethal concentration (LC50) for the mentioned toxicant as well as median survival of the flies, which can be a determining factor in proceeding with further stages of experiments. Graphical abstract.

2.
Acta Histochem ; 124(7): 151935, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932544

RESUMO

α-actinin superfamily houses the family of parvins, comprising α, ß and γ isoforms in the vertebrates and a single orthologue in the invertebrates. Parvin as an adaptor protein is a member of the ternary IPP-complex including Integrin Linked Kinase (ILK) and particularly-interesting-Cys-His-rich protein (PINCH). Each of the complex proteins showed a conserved lineage and was principally used by the evolutionarily primitive integrin-adhesome machinery to regulate cellular behaviour and signalling pathways. Parvin facilitated integrin mediated integration of the extracellular matrix with cytoskeletal framework culminating in regulation of cellular adhesion and spreading, cytoskeleton reorganisation and cell survival. Studies have established role of parvin in pregnancy, lactation, matrix degradation, blood vessel formation and in several diseases such as cancer, NAFLD and cardiac diseases etc. This review narrates the history of parvin discovery, its elaborate gene structure and conservation across phyla including cellular expression, localisation and interacting partners in vertebrates as well as invertebrates. The review further discusses how parvin acts as an epicentre of signalling pathways, its associated mutants and diseased conditions.


Assuntos
Actinina , Proteínas dos Microfilamentos , Actinina/química , Actinina/genética , Actinina/metabolismo , Animais , Progressão da Doença , Feminino , Humanos , Integrinas , Proteínas dos Microfilamentos/genética , Transdução de Sinais
3.
Mol Biol Rep ; 47(12): 9849-9863, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33263930

RESUMO

Movement assisted by muscles forms the basis of various behavioural traits seen in Drosophila. Myogenesis involves developmental processes like cellular specification, differentiation, migration, fusion, adherence to tendons and neuronal innervation in a series of coordinated event well defined in body space and time. Gene regulatory networks are switched on-off, fine tuning at the right developmental stage to assist each cellular event. Drosophila is a holometabolous organism that undergoes myogenesis waves at two developmental stages, and is ideal for comparative analysis of the role of genes and genetic pathways conserved across phyla. In this review we have summarized myogenic events from the embryo to adult focussing on the somatic muscle development during the early embryonic stage and then on indirect flight muscles (IFM) formation required for adult life, emphasizing on recent trends of analysing muscle mutants and advances in Drosophila muscle biology.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila , Desenvolvimento Muscular , Animais , Fenômenos Fisiológicos Celulares , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA