Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37240748

RESUMO

Life most likely started during the Hadean Eon; however, the environmental conditions which contributed to the complexity of its chemistry are poorly known. A better understanding of various environmental conditions, including global (heliospheric) and local (atmospheric, surface, and oceanic), along with the internal dynamic conditions of the early Earth, are required to understand the onset of abiogenesis. Herein, we examine the contributions of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) associated with superflares from the young Sun to the formation of amino acids and carboxylic acids in weakly reduced gas mixtures representing the early Earth's atmosphere. We also compare the products with those introduced by lightning events and solar ultraviolet light (UV). In a series of laboratory experiments, we detected and characterized the formation of amino acids and carboxylic acids via proton irradiation of a mixture of carbon dioxide, methane, nitrogen, and water in various mixing ratios. These experiments show the detection of amino acids after acid hydrolysis when 0.5% (v/v) of initial methane was introduced to the gas mixture. In the set of experiments with spark discharges (simulation of lightning flashes) performed for the same gas mixture, we found that at least 15% methane was required to detect the formation of amino acids, and no amino acids were detected in experiments via UV irradiation, even when 50% methane was used. Carboxylic acids were formed in non-reducing gas mixtures (0% methane) by proton irradiation and spark discharges. Hence, we suggest that GCRs and SEP events from the young Sun represent the most effective energy sources for the prebiotic formation of biologically important organic compounds from weakly reducing atmospheres. Since the energy flux of space weather, which generated frequent SEPs from the young Sun in the first 600 million years after the birth of the solar system, was expected to be much greater than that of GCRs, we conclude that SEP-driven energetic protons are the most promising energy sources for the prebiotic production of bioorganic compounds in the atmosphere of the Hadean Earth.

2.
Sci Adv ; 8(12): eabi9743, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333577

RESUMO

Discovery of frequent superflares on active cool stars opened a new avenue in understanding the properties of eruptive events and their impact on exoplanetary environments. Solar data suggest that coronal mass ejections (CMEs) should be associated with superflares on active solar-like planet hosts and produce solar/stellar energetic particle (SEP/StEP) events. Here, we apply the 2D Particle Acceleration and Transport in the Heliosphere model to simulate the SEPs accelerated via CME-driven shocks from the Sun and young solar-like stars. We derive the scaling of SEP fluence and hardness of energy spectra with CME speed and associated flare energy. These results have crucial implications for the prebiotic chemistry and expected atmospheric biosignatures from young rocky exoplanets as well as the chemistry and isotopic composition of circumstellar disks around infant solar-like stars.

3.
Astrobiology ; 20(12): 1413-1426, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33121251

RESUMO

The amount of nitrogen (N2) present in the atmosphere when life evolved on our planet is central for understanding the production of prebiotic molecules and, hence, is a fundamental quantity to constrain. Estimates of atmospheric molecular nitrogen partial surface pressures during the Archean, however, widely vary in the literature. In this study, we apply a model that combines newly gained insights into atmospheric escape, magma ocean duration, and outgassing evolution. Results suggest <420 mbar surface molecular nitrogen at the time when life originated, which is much lower compared with estimates in previous works and hence could impact our understanding of the production rate of prebiotic molecules such as hydrogen cyanide. Our revised values provide new input for atmospheric chamber experiments that simulate prebiotic chemistry on the early Earth. Our results that assume negligible nitrogen escape rates are in agreement with research based on solidified gas bubbles and the oxidation of iron in micrometeorites at 2.7 Gyr ago, which suggest that the atmospheric pressure was probably less than half the present-day value. Our results contradict previous studies that assume N2 partial surface pressures during the Archean were higher than those observed today and suggest that, if the N2 partial pressure were low in the Archean, it would likely be low in the Hadean as well. Furthermore, our results imply a biogenic nitrogen fixation rate from 9 to 14 Teragram N2 per year (Tg N2/year), which is consistent with modern marine biofixation rates and, hence, indicate an oceanic origin of this fixation process.


Assuntos
Atmosfera/química , Planeta Terra , Nitrogênio , Origem da Vida , Nitrogênio/química , Oxirredução
4.
Astrophys J ; 880(2)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214410

RESUMO

Observations from the Kepler mission have revealed frequent superflares on young and active solar-like stars. Superflares result from the large-scale restructuring of stellar magnetic fields, and are associated with the eruption of coronal material (a coronal mass ejection, or CME) and energy release that can be orders of magnitude greater than those observed in the largest solar flares. These catastrophic events, if frequent, can significantly impact the potential habitability of terrestrial exoplanets through atmospheric erosion or intense radiation exposure at the surface. We present results from numerical modeling designed to understand how an eruptive superflare from a young solar-type star, κ 1 Cet, could occur and would impact its astrospheric environment. Our data-inspired, three-dimensional magnetohydrodynamic modeling shows that global-scale shear concentrated near the radial-field polarity inversion line can energize the closed-field stellar corona sufficiently to power a global, eruptive superflare that releases approximately the same energy as the extreme 1859 Carrington event from the Sun. We examine proxy measures of synthetic emission during the flare and estimate the observational signatures of our CME-driven shock, both of which could have extreme space-weather impacts on the habitability of any Earth-like exoplanets. We also speculate that the observed 1986 Robinson-Bopp superflare from κ 1 Cet was perhaps as extreme for that star as the Carrington flare was for the Sun.

5.
Proc Natl Acad Sci U S A ; 115(2): 260-265, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284746

RESUMO

The presence of an atmosphere over sufficiently long timescales is widely perceived as one of the most prominent criteria associated with planetary surface habitability. We address the crucial question of whether the seven Earth-sized planets transiting the recently discovered ultracool dwarf star TRAPPIST-1 are capable of retaining their atmospheres. To this effect, we carry out numerical simulations to characterize the stellar wind of TRAPPIST-1 and the atmospheric ion escape rates for all of the seven planets. We also estimate the escape rates analytically and demonstrate that they are in good agreement with the numerical results. We conclude that the outer planets of the TRAPPIST-1 system are capable of retaining their atmospheres over billion-year timescales. The consequences arising from our results are also explored in the context of abiogenesis, biodiversity, and searches for future exoplanets. In light of the many unknowns and assumptions involved, we recommend that these conclusions must be interpreted with due caution.

6.
Sci Rep ; 7(1): 14141, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097693

RESUMO

The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitale worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O2), ozone (O3), water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets "highlighted" by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric "beacons of life" create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA