Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668330

RESUMO

In the Mediterranean region, reforestation programs record failures following successive drought periods. The use of different plant-growth-promoting amendments and the understanding of drought-induced physiological and biochemical responses of carob will contribute to the reforestation program's success. In this study, the effects of arbuscular-mycorrhizal-fungi (AMF), vermicompost (VC), and rock phosphate (RP) on carob seedlings under drought stress (DS) and recovery (REC) conditions were evaluated. A greenhouse experiment was conducted with carob seedlings grown in the presence of AMF, VC, and RP, applied alone or in combination under well-watered (WW), DS (by stopping irrigation for 12 days), and recovery (REC) conditions. The obtained results indicated that the triple combination (AMF + VC + RP) presented the highest improvement in water potential, photosynthetic pigment content, stomatal conductance, and chlorophyll fluorescence compared to the controls under DS and after REC. In addition, this combination resulted in improved tolerance of carob seedlings to DS and a high potential for rapid recovery after rehydration due to a high accumulation of sugars, proteins, and antioxidant enzymes. In summary, the results underline the importance of inoculating carob with AMF in combination with (in)-organic amendments in improving its tolerance to DS and its recovery performances.

2.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592805

RESUMO

In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.

3.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255984

RESUMO

Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.


Assuntos
Micorrizas , Simbiose , Grão Comestível , Estruturas Vegetais , Biologia de Sistemas
4.
Plants (Basel) ; 12(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38140483

RESUMO

Utilizing water resources rationally has become critical due to the expected increase in water scarcity. Cacti are capable of surviving with minimal water requirements and in poor soils. Despite being highly drought-resistant, cacti still faces limitations in realizing its full potential under drought-stress conditions. To this end, we investigated the interactive effect of humic substances (Hs) and arbuscular mycorrhizal fungi (AMF) on cactus plants under drought stress. In the study, a cactus pot experiment had three irrigation levels (W1: no irrigation, W2: 15% of field capacity, and W3: 30% of field capacity) and two biostimulants (Hs soil amendment and AMF inoculation), applied alone or combined. The findings show that the W1 and W2 regimes affected cactus performance. However, Hs and/or AMF significantly improved growth. Our results revealed that drought increased the generation of reactive oxygen species. However, Hs and/or AMF application improved nutrient uptake and increased anthocyanin content and free amino acids. Furthermore, the soil's organic matter, phosphorus, nitrogen, and potassium contents were improved by the application of these biostimulants. Altogether, using Hs alone or in combination with AMF can be an effective and sustainable approach to enhance the tolerance of cactus plants to drought conditions, while also improving the soil quality.

5.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240429

RESUMO

The use of illicit substances continues to pose a substantial threat to global health, affecting millions of individuals annually. Evidence suggests the existence of a 'brain-gut axis' as the involving connection between the central nervous system and gut microbiome (GM). Dysbiosis of the GM has been associated with the pathogenesis of various chronic diseases, including metabolic, malignant, and inflammatory conditions. However, little is currently known about the involvement of this axis in modulating the GM in response to psychoactive substances. In this study, we investigated the effect of MDMA (3,4-methylenedioxymethamphetamine, "Ecstasy")-dependence on the behavioral and biochemical responses, and the diversity and abundance of the gut microbiome in rats post-treated (or not) with aqueous extract of Anacyclus pyrethrum (AEAP), which has been reported to exhibit anticonvulsant activity. The dependency was validated using the conditioned place preference (CPP) paradigm, behavioral, and biochemical tests, while the gut microbiota was identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The CPP and behavioral tests confirmed the presence of MDMA withdrawal syndrome. Interestingly, treatment with AEAP led to a compositional shift in the GM compared to the MDMA-treated rats. Specifically, the AEAP group yielded a higher relative abundance of Lactobacillus and Bifidobacter, while animals receiving MDMA had higher levels of E. coli. These findings suggest that A. pyrethrum therapy may directly modulate the gut microbiome, highlighting a potential target for regulating and treating substance use disorders.


Assuntos
Chrysanthemum cinerariifolium , Microbioma Gastrointestinal , N-Metil-3,4-Metilenodioxianfetamina , Ratos , Animais , N-Metil-3,4-Metilenodioxianfetamina/efeitos adversos , Escherichia coli , Afeto
6.
Antioxidants (Basel) ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275646

RESUMO

Trihexyphenidyl (THP)-a synthetic anticholinergic medication used to manage parkinsonism and extrapyramidal symptoms-has gained significant clinical recognition. However, there is a critical gap in understanding its withdrawal effects. This study investigates the intricate interplay between gut microbiota and oxidative stress during THP withdrawal. Furthermore, it explores the therapeutic potential of Anacyclus pyrethrum (AEAP) for alleviating the associated adverse effects. This comprehensive research combines behavioral tests, biochemical analysis, gut microbiome assessment utilizing matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and oxidative stress measures. The results reveal that the chronic administration of THP leads to severe withdrawal syndrome, marked by heightened anxiety, depressive-like behaviors, increased cortisol levels, elevated oxidative stress, and gut dysbiosis. However, the administration of AEAP alongside THP shows a significant capacity to mitigate these deleterious effects. Co-treatment and post-treatment with AEAP increased bacterial density and diversity, promoting the proliferation of beneficial bacteria associated with improved gut health. Furthermore, AEAP administration reduced cortisol levels and exhibited potent antioxidant properties, effectively countering the THP-induced oxidative damage. This study highlights the withdrawal effects of THP and underscores the therapeutic potential of AEAP for managing these symptoms. The findings reveal its promising effects in alleviating behavioral and biochemical impairments, reducing oxidative stress, and restoring gut microbiota, which could significantly impact the clinical management of THP withdrawal and potentially extend to other substance withdrawal scenarios.

7.
Front Plant Sci ; 13: 860484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371170

RESUMO

Modern agriculture is facing multiple and complex challenges and has to produce more food and fiber to feed a growing population. Increasingly volatile weather and more extreme events such as droughts can reduce crop productivity. This implies the need for significant increases in production and the adoption of more efficient and sustainable production methods and adaptation to climate change. A new technological and environment-friendly management technique to improve the tolerance of quinoa grown to maturity is proposed using native microbial biostimulants (arbuscular mycorrhizal fungi; AMF) alone, in the consortium, or in combination with compost (Comp) as an organic matter source under two water treatments (normal irrigation and drought stress (DS)). Compared with controls, growth, grain yield, and all physiological traits under DS were significantly decreased while hydrogen peroxide, malondialdehyde, and antioxidative enzymatic functions were significantly increased. Under DS, biofertilizer application reverted physiological activities to normal levels and potentially strengthened quinoa's adaptability to water shortage as compared to untreated plants. The dual combination yielded a 97% improvement in grain dry weight. Moreover, the effectiveness of microbial and compost biostimulants as a biological tool improves grain quality and limits soil degradation under DS. Elemental concentrations, particularly macronutrients, antioxidant potential (1,1-diphenyl-2-picrylhydrazyl radical scavenging activity), and bioactive compounds (phenol and flavonoid content), were accumulated at higher levels in biofertilizer-treated quinoa grain than in untreated controls. The effects of AMF + Comp on post-harvest soil fertility traits were the most positive, with significant increases in total phosphorus (47%) and organic matter (200%) content under drought conditions. Taken together, our data demonstrate that drought stress strongly influences the physiological traits, yield, and quality of quinoa. Microbial and compost biostimulation could be an effective alternative to ensure greater recovery capability, thereby maintaining relatively high levels of grain production. Our study shows that aboveground stress responses in quinoa can be modulated by signals from the microbial/compost-treated root. Further, quinoa grains are generally of higher nutritive quality when amended and inoculated with AMF as compared to non-inoculated and compost-free plants.

8.
Plants (Basel) ; 11(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161374

RESUMO

The present study aimed to determine the effects of biostimulants on the physicochemical parameters of the agricultural soil of quinoa under two water regimes and to understand the mode of action of the biostimulants on quinoa for drought adaptation. We investigated the impact of two doses of vermicompost (5 and 10 t/ha) and arbuscular mycorrhizal fungi applied individually, or in joint application, on attenuating the negative impacts of water shortage and improving the agro-physiological and biochemical traits of quinoa, as well as soil fertility, under two water regimes (well-watered and drought stress) in open field conditions. Exposure to drought decreased biomass, leaf water potential, and stomatal conductance, and increased malondialdehyde and hydrogen peroxide content. Mycorrhiza and/or vermicompost promoted plant growth by activating photosynthesis machinery and nutrient assimilation, leading to increased total soluble sugars, proteins, and antioxidant enzyme activities in the leaf and root. After the experiment, the soil's total organic matter, phosphorus, nitrogen, calcium, and soil glomalin content improved by the single or combined application of mycorrhiza and vermicompost. This knowledge suggests that the combination of mycorrhiza and vermicompost regulates the physiological and biochemical processes employed by quinoa in coping with drought and improves the understanding of soil-plant interaction.

9.
Sci Rep ; 11(1): 22835, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819547

RESUMO

In the current study, an eco-friendly management technology to improve young carob (Ceratonia siliqua L.) tree tolerance to water deficit was set up by using single or combined treatments of arbuscular mycorrhizal fungi (AMF) and/or compost (C). Two groups of young carob have been installed: (i) carob cultivated under well-watered conditions (WW; 70% field capacity (FC)) and (ii) where the plants were drought-stressed (DS; 35% FC) during 2, 4, 6, and 8 months. The effect of used biofertilizers on the course of growth, physiological (photosynthetic traits, water status, osmolytes, and mineral content), and biochemical (hydrogen peroxide (H2O2), oxidative damage to lipids (malondialdehyde (MDA), and membrane stability (MS)) traits in response to short- and long-term droughts were assessed. The dual application of AMF and C (C + AMF) boosted growth, physiological and biochemical parameters, and nutrient uptake in carob under WW and DS. After eight months, C + AMF significantly enhanced stomatal conductance by 20%, maximum photochemical efficiency of PSII by 7%, leaf water potential by 23%, chlorophyll and carotenoid by 40%, plant uptake of mineral nutrients (P by 75%, N by 46%, K+ by 35%, and Ca2+ by 40%), concentrations of soluble sugar by 40%, and protein content by 44% than controls under DS conditions. Notably, C + AMF reduced the accumulation of H2O2 and MDA content to a greater degree and increased MS. In contrast, enzyme activities (superoxide dismutase, catalase, peroxidase, and polyphenoloxidase) significantly increased in C + AMF plants under DS. Overall, our findings suggest that the pairing of C + AMF can mediate superior drought tolerance in young carob trees by increasing leaf stomatal conductance, cellular water content, higher solute concentration, and defense response against oxidative damage during the prolonged period of DS.


Assuntos
Compostagem , Secas , Fabaceae/crescimento & desenvolvimento , Micorrizas/fisiologia , Agricultura Orgânica , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Antioxidantes/metabolismo , Fabaceae/metabolismo , Fabaceae/microbiologia , Estado de Hidratação do Organismo , Estresse Oxidativo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Simbiose , Árvores/metabolismo , Árvores/microbiologia , Água/metabolismo
10.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203117

RESUMO

Three phosphate glass compositions, VF1, VF2, and VF3, containing macro and micronutrients with different [K2O/(CaO+MgO)] ratio, were formulated to be used as controlled release fertilizers for tomato crop, depending on their chemical durability in water and their propriety with respect to the standards of controlled-release fertilizers. This study investigated the influence of [K2O/(CaO+MgO)] ratio variation on glass properties. For this, the elaborated glasses have undergone a chemical characterization using inductively coupled plasma atomic emission spectroscopy, a thermal characterization using differential thermal analysis, a physicochemical characterization based on density and molar volume measurements, and a structural characterization using Raman spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. In addition, the chemical durability was determined by measuring the percentage of weight loss and the pH. Results revealed that the glass structure and composition have the mean role in controlling the release of nutrients in water. By increasing [K2O/(CaO+MgO)] ratio, the dissolution rates of the glasses increased due to the shrinking in the rate of crosslinking between phosphate chains, accompanied with a diminution in transition and crystallization temperatures, and an increase in the molar volume. An agronomic valorization of VF1 and VF2 glass fertilizers, which showed dissolution profiles adequate to the criteria of controlled-release fertilizers, was carried out to evaluate their efficiency on tomato crops. These glass fertilizers improved soil mineral content and tomato performances in comparison to the control and NPK treatments with the distinction of VF2. The results highlight the effectiveness of these smart fertilizers toward their potential large-scale application to improve crop production and quality for high nutritional value foods.


Assuntos
Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Frutas/crescimento & desenvolvimento , Vidro/química , Fosfatos , Solo , Solanum lycopersicum/crescimento & desenvolvimento , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Fosfatos/química , Fosfatos/farmacologia
11.
Materials (Basel) ; 14(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800432

RESUMO

Four different phosphate glass formulations (F0, F1, F2, and F3) were developed according o wheat nutrient requirements to be used as controlled-release fertilizers. These glasses contain macro-elements (P2O5-K2O-CaO-MgO), with the addition of microelements (Fe-Mn-Zn-B-Cu-Mo) in each formulation. The effects of these elements' addition on thermal properties, glass structure, and dissolution behaviors were investigated. Results showed that these glasses are composed essentially of metaphosphate chains and that the addition of micronutrients could change the chemical durability of phosphate glasses. A greenhouse experiment was performed using wheat (Triticum durum L.) to evaluate the efficiency of the four glasses, with or without application of chemical nitrogen (N) (N + VF and VF, respectively). The different formulas were tested using two rates of 0.3 and 1 g per plant. In addition to the vitreous fertilizer formulations, two other treatments were applied: control treatment with no amendment and Nitrogen-Phosphorus-Potassium treatment with the application of the conventional fertilizers on the base of optimal rates. After four months of cultivation, vitreous fertilizers application significantly improved growth (7% to 88%), photosynthetic (8% to 49%) parameters, and yield (29% to 33%) compared to NPK treatment and to the control. It has been found that formulas F1, F2, and F3 may constitute a potential alternative to conventional fertilization due to their positive impact on wheat production and can be used in practice as an environmentally controlled-release fertilizer.

12.
Front Plant Sci ; 11: 516818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193464

RESUMO

Rainfall regimes are expected to shift on a regional scale as the water cycle intensifies in a warmer climate, resulting in greater extremes in dry versus wet conditions. Such changes are having a strong impact on the agro-physiological functioning of plants that scale up to influence interactions between plants and microorganisms and hence ecosystems. In (semi)-arid ecosystems, the date palm (Phoenix dactylifera L.) -an irreplaceable tree- plays important socio-economic roles. In the current study, we implemeted an adapted management program to improve date palm development and its tolerance to water deficit by using single or multiple combinations of exotic and native arbuscular mycorrhizal fungi (AMF1 and AMF2 respectively), and/or selected consortia of plant growth-promoting rhizobacteria (PGPR: B1 and B2), and/or composts from grasses and green waste (C1 and C2, respectively). We analyzed the potential for physiological functioning (photosynthesis, water status, osmolytes, mineral nutrition) to evolve in response to drought since this will be a key indicator of plant resilience in future environments. As result, under water deficit, the selected biofertilizers enhanced plant growth, leaf water potential, and electrical conductivity parameters. Further, the dual-inoculation of AMF/PGPR amended with composts alone or in combination boosted the biomass under water deficit conditions to a greater extent than in non-inoculated and/or non-amended plants. Both single and dual biofertilizers improved physiological parameters by elevating stomatal conductance, photosynthetic pigments (chlorophyll and carotenoids content), and photosynthetic efficiency. The dual inoculation and compost significantly enhanced, especially under drought stress, the concentrations of sugar and protein content, and antioxidant enzymes (polyphenoloxidase and peroxidase) activities as a defense strategy as compared with controls. Under water stress, we demonstrated that phosphorus was improved in the inoculated and amended plants alone or in combination in leaves (AMF2: 807%, AMF1+B2: 657%, AMF2+C1+B2: 500%, AMF2+C2: 478%, AMF1: 423%) and soil (AMF2: 397%, AMF1+B2: 322%, AMF2+C1+B2: 303%, AMF1: 190%, C1: 188%) in comparison with controls under severe water stress conditions. We summarize the extent to which the dual and multiple combinations of microorganisms can overcome challenges related to drought by enhancing plant physiological responses.

13.
Microorganisms ; 8(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143245

RESUMO

Salinity is one of the devastating abiotic stresses that cause reductions in agricultural production. The increased salinization affects alfalfa growth, metabolism, and rhizobium capacity for symbiotic N2 fixation negatively. This study was undertaken to investigate the efficiency of green compost (C; made from green waste), arbuscular mycorrhizal fungi (M; field-sourced native consortium), and/or rhizobium (R; a salt-tolerant rhizobium strain) individually or in combination as an effective strategy to improve alfalfa productivity under non-saline and high-saline (120 mM NaCl) conditions. In addition, we aimed to understand the agro-physiological and metabolic basis as well as glomalin content in the soil of biofertilizers-induced salt tolerance in alfalfa. Here, we show that mycorrhizal infection was enhanced after MR inoculation, while C application decreased it significantly. Salinity reduced growth, physiological functioning, and protein concentration, but the antioxidant system has been activated. Application of the selected biofertilizers, especially C alone or combined with M and/or R improved alfalfa tolerance. The tri-combination CMR mitigated the negative effects of high salinity by stimulating plant growth, roots and nodules dry matters, mineral uptake (P, N, and K), antioxidant system, synthesis of compatible solutes, and soil glomalin content, sustaining photosynthesis-related performance and decreasing Na+ and Cl- accumulation, lipid peroxidation, H2O2 content, and electrolyte leakage.

14.
Plants (Basel) ; 9(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936327

RESUMO

Irregular precipitation and drought caused an increase in tree mortality rates in multiple forest biomes with alterations in both ecosystem services and carbon balance. Carob (Ceratonia siliqua) growth and production in arid and semi-arid ecosystems are likely affected by climate change-induced droughts. Understanding the physiological responses of drought-induced early-stage tree death and strategies to enhance drought tolerance and optimize growth will help tree improvement programs. Mycorrhizal inoculation has a pronounced impact on plant growth, water absorption, mineral nutrition, and protection from abiotic stresses. However, a better understanding of these complex interconnected cellular processes and arbuscular mycorrhizal fungi (AMF)-mediated mechanisms regulating drought tolerance in plants will enhance its potential application as an efficient approach for bio-amelioration of stresses. The objectives of this work were to elucidate the different effects of autochthone AMF on inorganic solute and water content uptakes, organic adjustments (sugar and proteins content), leaf gas exchange (stomatal conductance and efficiency of photosystems I and II), and oxidative damage of two contrasting ecotypes of carob seedlings: coastal (southern ecotype (SE)) and in-land (northern ecotype (NE)) under control (C), drought (by cessation of irrigation for 15 days (15D)), and recovery (R) conditions. Our findings showed that AMF promoted growth, nutrient content, and physiological and biochemical parameters in plants of both ecotypes during C, 15D, and R conditions. After four days of recovery, stomatal conductance (gs), the maximum photochemical efficiency of PSII (Fv/Fm), water content, and plant uptake of mineral nutrients (P, K, Na, and Ca) were significantly higher in shoots of mycorrhizal (AM) than non-mycorrhizal (NM) control plants. Consequently, AMF reduced to a greater degree the accumulation of hydrogen peroxide (H2O2) and oxidative damage to lipid (malondialdehyde (MDA)) content in AM than NM plants in NE and SE, after recovery. Altogether, our findings suggest that AMF can play a role in drought resistance of carob trees at an early stage by increasing the inorganic solutes (P, K, Na, and Ca), water content uptake, organic solutes (soluble sugars and protein content), stomatal conductance, and defense response against oxidative damage during re-watering after drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...