Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921740

RESUMO

Verticillium wilt is a soil-borne disease caused by distinct vegetative compatibility groups (VCG) of the fungus Verticillium dahliae. Defoliating (VCG 1A) and non-defoliating (VCG 2A) pathotypes of V. dahliae have contributed to yield losses of cotton production in Australia. To study the virulence and the infection process of V. dahliae on cotton, two isolates, one representing each VCG, have been transformed with fluorescent protein genes. The transformants maintained their ability to infect the host, and both strains were observed to move through the plant vasculature to induce wilt symptoms. Furthermore, virulence testing suggests that the cotton V. dahliae strains can endophytically colonise common weed plant species found in the Australian landscape, and that is contrasted by their ability to infect and colonise native tobacco plants. The fluorescently labelled strains of V. dahliae not only allowed us to gain a thorough understanding of the infection process but also provided a method to rapidly identify recovered isolates from host colonisation studies.

2.
Access Microbiol ; 5(9)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841104

RESUMO

Ginger (Zingiber officinale Roscoe) is an important horticultural crop valued for its medicinal and culinary properties. Fusarium yellows, caused by the ascomycete fungus Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating soil-borne disease of ginger. It has curtailed ginger production in Australia and around the world, leading to significant economic losses. An integrated approach is required to manage soil-borne diseases such as those caused by Foz. However, little is known about the influence of Foz inoculum on disease severity. This study aimed to establish a minimum threshold level of spores per gram of soil required for plant infection and to develop and evaluate a pot inoculation method for screening large numbers of plants in a controlled environment. To achieve this, the dominant Australian ginger cultivar Canton was inoculated with 101, 103, 105, 106 and 107 microconidia g-1 soil. The inoculum density was positively associated with leaf and stem yellows, and rhizome discolouration, and negatively associated with root length and rhizome weight. The lowest threshold required for plant infection was 101 microconidia g-1 soil, which may provide an important basis for outbreaks of Foz in the field. This finding adds significantly to our knowledge of the impact of soil health on ginger production, thereby contributing to the integrated management of Foz. When used at a high dose, this method can facilitate reliable and accurate screening of Foz-susceptible ginger genotypes in a controlled environment.

3.
Pathogens ; 12(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375510

RESUMO

Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.

4.
Pathogens ; 12(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839561

RESUMO

Vascular wilt caused by the ascomycete fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) is a major constraint of banana production around the world. The virulent race, namely Tropical Race 4, can infect all Cavendish-type banana plants and is now widespread across the globe, causing devastating losses to global banana production. In this study, we characterized Foc Subtropical Race 4 (STR4) resistance in a wild banana relative which, through estimated genome size and ancestry analysis, was confirmed to be Musa acuminata ssp. malaccensis. Using a self-derived F2 population segregating for STR4 resistance, quantitative trait loci sequencing (QTL-seq) was performed on bulks consisting of resistant and susceptible individuals. Changes in SNP index between the bulks revealed a major QTL located on the distal end of the long arm of chromosome 3. Multiple resistance genes are present in this region. Identification of chromosome regions conferring resistance to Foc can facilitate marker assisted selection in breeding programs and paves the way towards identifying genes underpinning resistance.

5.
Pathogens ; 12(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678490

RESUMO

Ginger (Zingiber officinale Roscoe) is an important horticultural crop, valued for its culinary and medicinal properties. Fusarium yellows of ginger, caused by Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating disease that has significantly reduced the quality and crop yield of ginger worldwide. The compatible interaction between ginger and Foz leading to susceptibility is dissected here. The pathogenicity of two Foz isolates on ginger was confirmed by their ability to colonise ginger and in turn induce both internal and external plant symptoms typical of Fusarium yellows. To shed light on Foz susceptibility at the molecular level, a set of defense-responsive genes was analysed for expression in the roots of ginger cultivars challenged with Foz. These include nucleotide-binding site (NBS) type of resistant (R) genes with a functional role in pathogen recognition, transcription factors associated with systemic acquired resistance, and enzymes involved in terpenoid biosynthesis and cell wall modifications. Among three R genes, the transcripts of ZoNBS1 and ZoNBS3 were rapidly induced by Foz at the onset of infection, and the expression magnitude was cultivar-dependent. These expression characteristics extend to the other genes. This study is the first step in understanding the mechanisms of compatible host-pathogen interactions in ginger.

6.
J Microbiol Methods ; 190: 106342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619139

RESUMO

Robust antifungal screening is technically challenging particularly for filamentous fungi. We present a method for undertaking antifungal screening assays that builds upon existing broth dilution protocols and incorporates time resolved image-based assessment of fungal growth. We show that the method performs with different fungi, particularly those for which spores can be used as inoculum, and with different compound classes, can accurately assess susceptibility or otherwise in only few hours and can even account for differences in inherent growth properties of strains.


Assuntos
Antifúngicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Fungos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Testes de Sensibilidade Microbiana
7.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801529

RESUMO

During the infection of a host, plant pathogenic fungi secrete small proteins called effectors, which then modulate the defence response of the host. In the Fusarium oxysporum species complex (FOSC), the secreted in xylem (SIX) gene effectors are important for host-specific pathogenicity, and are also useful markers for identifying the various host-specific lineages. While the presence and diversity of the SIX genes has been explored in many of the pathogenic lineages of F. oxysporum, there is a limited understanding of these genes in non-pathogenic, endophytic isolates of F. oxysporum. In this study, universal primers for each of the known SIX genes are designed and used to screen a panel of endophytically-associated Fusarium species isolated from healthy, asymptomatic banana tissue. SIX gene orthologues are identified in the majority of the Fusarium isolates screened in this study. Furthermore, the SIX gene profiles of these endophytic isolates do not overlap with the SIX genes present in the pathogenic lineages of F. oxysporum that are assessed in this study. SIX gene orthologues have not been commonly identified in Fusarium species outside of the FOSC nor in non-pathogenic isolates of F. oxysporum. The results of this study indicate that the SIX gene effectors may be more broadly distributed throughout the Fusarium genus than previously thought. This has important implications for understanding the evolution of pathogenicity in the FOSC.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Especificidade de Hospedeiro , Musa/microbiologia , Doenças das Plantas/microbiologia , Transcriptoma , Proteínas Fúngicas/genética , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Filogenia , Virulência/genética
8.
Front Microbiol ; 10: 1062, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156584

RESUMO

Fusarium oxysporum f. sp. cubense (Foc) has severely curtailed banana production in the tropical regions of the world. The tropical race 4 (TR4) of Foc was detected in Australia in the 1990s and it is virulent to all Cavendish type banana cultivars, which represents the majority of banana production in Australia. Genetic resistance to Foc race 4 is urgently needed. To characterize sources of resistance, we have assessed the Foc resistance response of 34 Musa cultivars with plants grown under controlled settings. Amongst diploid banana cultivars carrying the AA genome, resistance is found in Musa acuminata sub-species including malaccensis 'Pahang' and burmannica 'Calcutta4.' In the polyploid group, the hybrids such as 'FHIA-18' and 'FHIA-25' are highly resistant against both Foc-TR4 and subtropical race 4 (Foc-STR4). Interestingly, 'FHIA-2' and 'CAM020' appear to be resistant to Foc-TR4 but susceptible to Foc-STR4, suggesting potential differences in the resistance mechanisms against the different race 4 strains. Using a GFP tagged Foc-STR4 strain challenged onto both resistant and susceptible M. a. malaccensis lines, a high inoculum dosage rapidly induced vascular wilt in the susceptible M. a. malaccensis lines at 2.5 weeks. This was associated with an accumulation of micro-conidia in the rhizome and the movement of the fungus through the xylem vessels. In contrast, the fungal movement was restrained in the rhizome of the resistant M. a. malaccensis lines and no sporulation was observed. Overall, this research suggests that the resistance response is dependent to an extent on inoculum dosage and that the plant host's response, in the rhizome, plays an important role in inhibiting the fungus from spreading to the rest of the plant. Identifying race 4 resistant accessions can help to understand mechanisms of resistance and provide banana breeders with the genetic resources to integrate resistance genes into commercial varieties.

9.
Front Plant Sci ; 10: 547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214206

RESUMO

Fusarium wilt is currently spreading in banana growing regions around the world leading to substantial losses. The disease is caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), which is further classified into distinct races according to the banana varieties that they infect. Cavendish banana is resistant to Foc race 1, to which the popular Gros Michel subgroup succumbed last century. Cavendish effectively saved the banana industry, and became the most cultivated commercial subgroup worldwide. However, Foc tropical race 4 (TR4) subsequently emerged in Southeast Asia, causing significant yield losses due to its high level of aggressiveness to cultivars of Cavendish, and other commonly grown cultivars. Preventing further spread is crucially important in the absence of effective control methods or resistant market-acceptable banana cultivars. Implementation of quarantine and containment measures depends on early detection of the pathogen through reliable diagnostics. In this study, we tested the hypothesis that secreted in xylem (SIX) genes, which currently comprise the only known family of effectors in F. oxysporum, contain polymorphisms to allow the design of molecular diagnostic assays that distinguish races and relevant VCGs of Foc. We present specific and reproducible diagnostic assays based on conventional PCR targeting SIX genes, using as templates DNA extracted from pure Foc cultures. Sets of primers specifically amplify regions of: SIX6 in Foc race 1, SIX1 gene in TR4, SIX8 in subtropical race 4, SIX9/SIX10 in Foc VCG 0121, and SIX13 in Foc VCG 0122. These assays include simplex and duplex PCRs, with additional restriction digestion steps applied to amplification products of genes SIX1 and SIX13. Assay validations were conducted to a high international standard including the use of 250 Fusarium spp. isolates representing 16 distinct Fusarium species, 59 isolates of F. oxysporum, and 21 different vegetative compatibility groups (VCGs). Tested parameters included inter and intraspecific analytical specificity, sensitivity, robustness, repeatability, and reproducibility. The resulting suite of assays is able to reliably and accurately detect R1, STR4, and TR4 as well as two VCGs (0121 and 0122) causing Fusarium wilt in bananas.

10.
Front Plant Sci ; 9: 1748, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538716

RESUMO

Fusarium wilt, caused by the fungus Fusarium oxysporum f.sp. cubense (Foc), is one of the most important and destructive diseases in banana crops worldwide. There have been numerous studies into the infection process of this soil-borne pathogen; however, the extent of research into the movement of the pathogen through the rhizome and into the rest of the plant is limited. Furthermore, little is known about the movement of the pathogen once it reaches the aerial components of the plant. A strain of Foc sub-tropical race 4, genetically transformed with green fluorescent protein (GFP) gene, was used to monitor the movement of the pathogen through two susceptible cultivars, Cavendish 'Williams' (Musa AAA) and Lady Finger (Musa AAB). Visualization of the pathogen in planta demonstrated its presence in the roots, the rhizome and in the outer leaf sheaths of the pseudostem prior to the appearance of external symptoms. Within the non-senescing leaf sheaths, the migration of Foc was confined to the xylem vessels; this included those where the vascular tissue was visibly discolored, as well as those, which were apparently healthy. As senescence of leaf sheaths occurred, chlamydospores developed within the gas spaces, while formation of sporodochia, and hyphal growth were apparent on the outer surface of senescing leaf sheaths. These results generate a greater understanding of the epidemiology of Foc, providing much needed knowledge to assist in the future management of Fusarium wilt incursions, as well as enhancing protocols for ongoing on-farm hygiene and biosecurity.

11.
Mol Plant Pathol ; 19(5): 1155-1171, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802020

RESUMO

It is hypothesized that the virulence of phytopathogenic fungi is mediated through the secretion of small effector proteins that interfere with the defence responses of the host plant. In Fusarium oxysporum, one family of effectors, the Secreted In Xylem (SIX) genes, has been identified. We sought to characterize the diversity and evolution of the SIX genes in the banana-infecting lineages of F. oxysporum f. sp. cubense (Foc). Whole-genome sequencing data were generated for the 23 genetic lineages of Foc, which were subsequently queried for the 14 known SIX genes (SIX1-SIX14). The sequences of the identified SIX genes were confirmed in a larger collection of Foc isolates. Genealogies were generated for each of the SIX genes identified in Foc to further investigate the evolution of the SIX genes in Foc. Within Foc, variation of the SIX gene profile, including the presence of specific SIX homologues, correlated with the pathogenic race structure of Foc. Furthermore, the topologies of the SIX gene trees were discordant with the topology of an infraspecies phylogeny inferred from EF-1α/RPB1/RPB2 (translation elongation factor-1α/RNA polymerase II subunit I/RNA polymerase II subunit II). A series of topological constraint models provided strong evidence for the horizontal transmission of SIX genes in Foc. The horizontal inheritance of pathogenicity genes in Foc counters previous assumptions that convergent evolution has driven the polyphyletic phylogeny of Foc. This work has significant implications for the management of Foc, including the improvement of diagnostics and breeding programmes.


Assuntos
Fusarium/genética , Transferência Genética Horizontal , Genes Fúngicos , Variação Genética , Musa/microbiologia , Sequência de Bases , Evolução Molecular , Genes Essenciais , Padrões de Herança/genética , Funções Verossimilhança , Filogenia , Especificidade da Espécie
12.
Theor Appl Genet ; 131(1): 127-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980023

RESUMO

KEY MESSAGE: Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen. Leaf rust (LR) caused by Puccinia triticina is an important disease of wheat (Triticum aestivum L.), and the deployment of genetically resistant cultivars is the most viable strategy to minimise yield losses. In this study, we evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (St Petersburg, Russia) for LR resistance and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at seedling and adult plant growth stages using three P. triticina pathotypes prevalent in Australia. GWAS was applied to 11 phenotypic data sets which identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r 2 = 0.7), suggested a high allelic fixation. Subsequent haplotype analysis for this region found seven haplotype variants, of which two were strongly associated with LR resistance at seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult plant stage. Furthermore, most of the tested lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Austrália , Basidiomycota , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
13.
Methods Mol Biol ; 1667: 43-55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29039002

RESUMO

Fusarium spp. are devastating fungal pathogens which cause significant losses in many cereal crops like wheat, maize, and barley. Genetic improvement of disease resistance requires an improved understanding of defense-associated processes operating in the host in response to an attack by Fusarium spp. Brachypodium distachyon is emerging as a model where host-cereal-infecting pathogen interactions can be studied conveniently. However, this requires developing an efficient infection assay that facilitates quick screening of germplasm (e.g., mutant lines). Here, we provide an efficient and reproducible Fusarium infection assay for Brachypodium. We believe this method will help further develop Brachypodium as a model for genetic improvement of disease resistance in cereals against Fusarium pathogens.


Assuntos
Brachypodium/genética , Brachypodium/microbiologia , Fusarium/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Brachypodium/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Resistência à Doença , Fusarium/genética , Mutação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos
14.
Plant Dis ; 101(2): 317-323, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30681925

RESUMO

Leaf rust (LR) caused by Puccinia triticina, is among the most important diseases of wheat (Triticum aestivum L.) crops globally. Deployment of cultivars incorporating genetic resistance, such as adult plant resistance (APR) or all-stage resistance, is considered the most sustainable control method. APR is preferred for durability because it places lower selection pressure on the pathogen and is often polygenic. In the search for new sources of APR, here we explored a diversity panel sourced from the N. I. Vavilov Institute of Plant Genetic Resources. Based on DNA marker screening, 83 of the 300 lines were deemed to carry known APR genes; namely, Lr34, Lr46, and Lr67. Interestingly, lines carrying Lr67 were mostly landraces from India and Pakistan, reconfirming the likely origin of the gene. Rapid phenotypic screening using a method that integrates assessment at both seedling and adult growth stages under accelerated growth conditions (i.e., constant light and controlled temperature) identified 50 lines carrying APR. Levels of APR corresponded well with phenotypes obtained in a field nursery inoculated using the same pathotype (R2 = 0.82). The second year of field testing, using a mixture of pathotypes with additional virulence for race-specific APR genes (Lr13 and Lr37), identified a subset of 13 lines that consistently displayed high levels of APR across years and pathotypes. These lines provide useful sources of resistance for future research. A strategy combining rapid generation advance coupled with phenotyping under controlled conditions could accelerate introgression of these potentially novel alleles into adapted genetic backgrounds.

15.
Ann Bot ; 118(2): 219-26, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288509

RESUMO

BACKGROUND AND AIMS: Silicon has been shown to enhance the resistance of plants to fungal and bacterial pathogens. Here, the effect of potassium silicate was assessed on two cotton (Gossypium hirsutum) cultivars subsequently inoculated with Fusarium oxysporum f. sp. vasinfectum (Fov). Sicot 189 is moderately resistant whilst Sicot F-1 is the second most resistant commercial cultivar presently available in Australia. METHODS: Transmission and light microscopy were used to compare cellular modifications in root cells after these different treatments. The accumulation of phenolic compounds and lignin was measured. KEY RESULTS: Cellular alterations including the deposition of electron-dense material, degradation of fungal hyphae and occlusion of endodermal cells were more rapidly induced and more intense in endodermal and vascular regions of Sicot F-1 plants supplied with potassium silicate followed by inoculation with Fov than in similarly treated Sicot 189 plants or in silicate-treated plants of either cultivar not inoculated with Fov. Significantly more phenolic compounds were present at 7 d post-infection (dpi) in root extracts of Sicot F-1 plants treated with potassium silicate followed by inoculation with Fov compared with plants from all other treatments. The lignin concentration at 3 dpi in root material from Sicot F-1 treated with potassium silicate and inoculated with Fov was significantly higher than that from water-treated and inoculated plants. CONCLUSIONS: This study demonstrates that silicon treatment can affect cellular defence responses in cotton roots subsequently inoculated with Fov, particularly in Sicot F-1, a cultivar with greater inherent resistance to this pathogen. This suggests that silicon may interact with or initiate defence pathways faster in this cultivar than in the less resistant cultivar.


Assuntos
Resistência à Doença/efeitos dos fármacos , Fusarium/fisiologia , Gossypium/efeitos dos fármacos , Doenças das Plantas/imunologia , Silício/farmacologia , Gossypium/imunologia , Gossypium/microbiologia , Gossypium/ultraestrutura , Lignina/metabolismo , Microscopia Eletrônica de Transmissão , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura
16.
Plant Physiol ; 160(1): 407-18, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22786889

RESUMO

The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family encodes plant-specific transcriptional regulators functioning in organ development. In a screen of Arabidopsis (Arabidopsis thaliana) sequence-indexed transferred DNA insertion mutants, we found disruption of the LOB DOMAIN-CONTAINING PROTEIN20 (LBD20) gene led to increased resistance to the root-infecting vascular wilt pathogen Fusarium oxysporum. In wild-type plants, LBD20 transcripts were barely detectable in leaves but abundant in roots, where they were further induced after F. oxysporum inoculation or methyl jasmonate treatment. Induction of LBD20 expression in roots was abolished in coronatine insensitive1 (coi1) and myc2 (allelic to jasmonate insensitive1) mutants, suggesting LBD20 may function in jasmonate (JA) signaling. Consistent with this, expression of the JA-regulated THIONIN2.1 (Thi2.1) and VEGETATIVE STORAGE PROTEIN2 (VSP2) genes were up-regulated in shoots of lbd20 following treatment of roots with F. oxysporum or methyl jasmonate. However, PLANT DEFENSIN1.2 expression was unaltered, indicating a repressor role for LBD20 in a branch of the JA-signaling pathway. Plants overexpressing LBD20 (LBD20-OX) had reduced Thi2.1 and VSP2 expression. There was a significant correlation between increased LBD20 expression in the LBD20-OX lines with both Thi2.1 and VSP2 repression, and reduced survival following F. oxysporum infection. Chlorosis resulting from application of F. oxysporum culture filtrate was also reduced in lbd20 leaves relative to the wild type. Taken together, LBD20 is a F. oxysporum susceptibility gene that appears to regulate components of JA signaling downstream of COI1 and MYC2 that are required for full elicitation of F. oxysporum- and JA-dependent responses. To our knowledge, this is the first demonstration of a role for a LBD gene family member in either biotic stress or JA signaling.


Assuntos
Acetatos/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ciclopentanos/farmacologia , Fusarium/patogenicidade , Oxilipinas/farmacologia , Transdução de Sinais , Alelos , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Meios de Cultura/metabolismo , Suscetibilidade a Doenças/imunologia , Fusarium/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estresse Fisiológico
17.
Phytother Res ; 26(3): 465-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21735503

RESUMO

Basidiomycetous macrofungi have therapeutic potential due to antimicrobial activity but little information is available for Australian macrofungi. Therefore, the present study investigated 12 Australian basidiomycetous macrofungi, previously shown to have promising activity against Staphylococcus aureus and Escherichia coli, for their antimicrobial potential against a range of other clinically relevant micro-organisms. Fruiting bodies were collected from across Queensland, Australia, freeze-dried and sequentially extracted with water and ethanol. The crude extracts were tested at 10 mg/mL and 1 mg/mL against six pathogens including two Gram-positive and two Gram-negative bacteria along with two fungi using a high throughput 96-well microplate bioassay. A degree of specificity in activity was exhibited by the water extract of Ramaria sp. (Gomphaceae) and the ethanol extracts of Psathyrella sp. (Psathyrellaceae) and Hohenbuehelia sp., which inhibited the growth of the two fungal pathogens used in the assay. Similarly, the ethanol extract of Fomitopsis lilacinogilva (Fomitopsidaceae) was active against the Gram-positive bacteria B. cereus only. Activity against a wider range of the microorganisms used in the assay was exhibited by the ethanol extract of Ramaria sp. and the water extract of Hohenbuehelia sp. (Pleurotaceae). These macrofungi can serve as new sources for the discovery and development of much needed new antimicrobials.


Assuntos
Anti-Infecciosos/farmacologia , Basidiomycota/química , Misturas Complexas/farmacologia , Proteínas Fúngicas/farmacologia , Anti-Infecciosos/química , Austrália , Bactérias/efeitos dos fármacos , Misturas Complexas/química , Etanol/química , Liofilização , Carpóforos/química , Proteínas Fúngicas/química , Testes de Sensibilidade Microbiana , Água/química
18.
Mol Plant Microbe Interact ; 24(6): 733-48, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21281113

RESUMO

Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Fusarium/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/microbiologia , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Indóis/metabolismo , Mutação , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Ácido Salicílico/metabolismo , Tiazóis/metabolismo
19.
Pharm Biol ; 49(5): 492-500, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21281165

RESUMO

CONTEXT: The production of antimicrobial compounds by macrofungi is not unexpected because they have to compete with other organisms for survival in their natural hostile environment. Previous studies have indicated that macrofungi contain secondary metabolites with a range of pharmacological activities including antimicrobial agents. OBJECTIVE: To investigate macrofungi for antimicrobial activity due to the increasing need for new antimicrobials as a result of resistance in the bacterial community to existing treatments. MATERIALS AND METHODS: Forty-seven different specimens of macrofungi were collected across Queensland, Australia. Freeze-dried fruiting bodies were sequentially extracted with three solvents: water, ethanol, and hexane. These extracts were tested against representative Gram+ve, Staphylococcus aureus and Gram-ve, Escherichia coli bacteria. RESULTS AND DISCUSSION: Overall water and ethanol extracts were more effective against S. aureus than E. coli, whereas a small number of hexane extracts showed better results for their antimicrobial potential against E. coli at higher concentrations only. Encouraging results were found for a number of macrofungi in the genera Agaricus (Agaricaceae), Amanita (Amanitaceae), Boletus (Boletaceae), Cantharellus (Cantharellaceae), Fomitopsis (Fomitopsidaceae), Hohenbuehelia (Pleurotaceae), Lentinus (Polyporaceae), Ramaria (Gomphaceae), and Strobilomyces (Boletaceae) showing good growth inhibition of the pathogens tested. CONCLUSION: The present study establishes the antimicrobial potential of a sample of Australian macrofungi that can serve as potential candidates for the development of new antibiotics.


Assuntos
Antibacterianos/farmacologia , Basidiomycota , Ensaios de Triagem em Larga Escala/métodos , Austrália , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
20.
Mycol Res ; 110(Pt 8): 929-35, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16891106

RESUMO

Fusarium wilt of banana is a potentially devastating disease throughout the world. Options for control of the causal organism, Fusarium oxysporum f.sp. cubense (Foc) are limited. Suppressive soil sites have previously been identified where, despite the presence of Foc, Fusarium wilt does not develop. In order to understand some aspects of this disease suppression, endophytic Fusarium oxysporum isolates were obtained from banana roots. These isolates were genetically characterized and compared with an isolate of Fusarium oxysporum previously identified as being capable of suppressing Fusarium wilt of banana in glasshouse trials. Three additional isolates were selected for glasshouse trials to assess suppression of Fusarium wilt in two different cultivars of banana, Cavendish and Lady Finger. One isolate (BRIP 29089) was identified as a potential biocontrol organism, reducing the disease severity of Fusarium wilt in Lady Finger and Cavendish cultivars. Interestingly, one isolate (BRIP 45952) increased Fusarium wilt disease severity on Cavendish. The implications of an isolate of Fusarium oxysporum, non-pathogenic on banana, increasing disease severity and the potential role of non-pathogenic isolates of Fusarium oxysporum in disease complexes are discussed.


Assuntos
Fusarium/classificação , Fusarium/isolamento & purificação , Musa/microbiologia , Microbiologia do Solo , Fusarium/genética , Fusarium/patogenicidade , Controle Biológico de Vetores , Filogenia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...