Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(8): e35451, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39052003

RESUMO

We have previously reported that a novel bioresorbable self-setting injectable bone paste composed of hydroxyapatite/collagen bone-like nanocomposite (HAp/Col) and (3-glycidoxypropyl)trimethoxysilane (GPTMS) was successfully prepared and was replaced with new bone within 3 months of implantation in defects created in porcine tibia. In this study, the HAp/Col-GPTMS paste was implanted into bone defects in rat tibiae to investigate the initial kinetics and bone tissue response. Even though more than 35% of GPTMS molecules should be eluted rapidly from directly injected pastes according to previously reported cell culture tests, in this study, energy-dispersive X-ray spectrometry did not detect Si (GPTMS) deposition in tissues surrounding the paste at 1 day postimplantation. Further, no abnormal inflammatory responses were observed in the surrounding tissues over the test period for both directly injected and prehardened pastes. Companying these observations with the results of the previous animal test (in which the paste was fully resorbed and was substituted with new bone), the eluted GPTMS resolved in no harm in vivo from the initial to final (completely resorbed) stages. Material resorption rates calculated from X-ray microcomputed tomography (µ-CT) images decreased with increasing in GPTMS concentration. Histological observations indicated that tartrate-resistant acid phosphatase (TRAP) active cells, (assumed to be osteoclasts), exist on the periphery of pastes. This result suggested that the paste was resorbed by osteoclasts in the same way as the HAp/Col. Since a good correlation was observed between TRAP active areas in histological sections and material resorption rate calculated from µ-CT, the TRAP activity coverage ratio offers the possibility to estimate the osteoclastic resorption ratio of materials, which are replaced with bone via bone remodeling process.


Assuntos
Colágeno , Durapatita , Silanos , Animais , Ratos , Durapatita/química , Durapatita/farmacologia , Silanos/química , Silanos/farmacologia , Colágeno/química , Tíbia/metabolismo , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Masculino , Suínos , Teste de Materiais , Ratos Sprague-Dawley , Nanocompostos/química
2.
J Biomed Mater Res B Appl Biomater ; 112(6): e35433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817048

RESUMO

Ex vivo tissue engineering is an effective therapeutic approach for the treatment of severe cartilage diseases that require tissue replenishment or replacement. This strategy demands scaffolds that are durable enough for long-term cell culture to form artificial tissue. Additionally, such scaffolds must be biocompatible to prevent the transplanted matrix from taking a toll on the patient's body. From the viewpoint of structure and bio-absorbability, a ß-tricalcium phosphate (ß-TCP) fiber scaffold (ßTFS) is expected to serve as a good scaffold for tissue engineering. However, the fragility and high solubility of ß-TCP fibers make this matrix unsuitable for long-term cell culture. To solve this problem, we developed an alginate-coated ß-TCP fiber scaffold (ßTFS-Alg). To assess cell proliferation and differentiation in the presence of ßTFS-Alg, we characterized ATDC5 cells, a chondrocyte-like cell line, when grown in this matrix. We found that alginate coated the surface of ßTFS fiber and suppressed the elution of Ca2+ from ß-TCP fibers. Due to the decreased solubility of ßTFS-Alg compared with ß-TCP, the former provided an improved scaffold for long-term cell culture. Additionally, we observed superior cell proliferation and upregulation of chondrogenesis marker genes in ATDC5 cells cultured in ßTFS-Alg. These results suggest that ßTFS-Alg is suitable for application in tissue culture.


Assuntos
Alginatos , Fosfatos de Cálcio , Alicerces Teciduais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Alginatos/química , Alicerces Teciduais/química , Proliferação de Células , Camundongos , Ácido Glucurônico/química , Animais , Ácidos Hexurônicos/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Linhagem Celular , Condrócitos/citologia , Condrócitos/metabolismo , Engenharia Tecidual , Teste de Materiais , Diferenciação Celular , Humanos , Técnicas de Cultura de Células
3.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591397

RESUMO

Hydroxyapatite and ß-tricalcium phosphate have been clinically applied as artificial bone materials due to their high biocompatibility. The development of artificial bones requires the verification of safety and efficacy through animal experiments; however, from the viewpoint of animal welfare, it is necessary to reduce the number of animal experiments. In this study, we utilized machine learning to construct a model that estimates the bone-forming ability of bioceramics from material fabrication conditions, material properties, and in vivo experimental conditions. We succeeded in constructing two models: 'Model 1', which predicts material properties from their fabrication conditions, and 'Model 2', which predicts the bone-formation rate from material properties and in vivo experimental conditions. The inclusion of full width at half maximum (FWHM) in the feature of Model 2 showed an improvement in accuracy. Furthermore, the results of the feature importance showed that the FWHMs were the most important. By an inverse analysis of the two models, we proposed candidates for material fabrication conditions to achieve target values of the bone-formation rate. Under the proposed conditions, the material properties of the fabricated material were consistent with the estimated material properties. Furthermore, a comparison between bone-formation rates after 12 weeks of implantation in the porcine tibia and the estimated bone-formation rate. This result showed that the actual bone-formation rates existed within the error range of the estimated bone-formation rates, indicating that machine learning consistently predicts the results of animal experiments using material fabrication conditions. We believe that these findings will lead to the establishment of alternative animal experiments to replace animal experiments in the development of artificial bones.

4.
Sci Rep ; 12(1): 18387, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319854

RESUMO

Currently, implants are utilized clinically for bone transplant procedures. However, if infectious osteomyelitis occurs at implant sites, removal of bacteria can be challenging. Moreover, altered blood flow at peri-implant infectious sites can create an anaerobic environment, making it more difficult to treat infection with antibiotics. Thus, it would be beneficial if implants could be modified to exhibit antibacterial activity, even in anaerobic conditions. Here, we show antibacterial activity of silver ions coated on titanium rods, even against the anaerobic bacteria Porphyromonas gingivalis (P. gingivalis), both in vitro and in vivo. Specifically, we implanted silver-coated or control uncoated titanium rods along with P. gingivalis in mouse femoral bone BM cavities and observed significantly inhibited P. gingivalis infection with silver-coated compared with non-coated rods, based on in vivo bio-imaging. Osteonecrosis by infectious osteomyelitis and elevation of the inflammatory factors C-reactive protein and IL-6 promoted by P. gingivalis s were also significantly reduced in the presence of silver-coated rods. Overall, our study indicates that silver ion coating of an implant represents a therapeutic option to prevent associated infection, even in anaerobic conditions or against anaerobic bacteria.


Assuntos
Antibacterianos , Bactérias Anaeróbias , Materiais Revestidos Biocompatíveis , Implantes Experimentais , Osteomielite , Prata , Animais , Camundongos , Antibacterianos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Íons/farmacologia , Osteomielite/microbiologia , Osteomielite/prevenção & controle , Prata/farmacologia , Titânio/química , Porphyromonas gingivalis/efeitos dos fármacos , Implantes Experimentais/efeitos adversos , Implantes Experimentais/microbiologia , Fêmur , Proteína C-Reativa
5.
J Mater Sci Mater Med ; 33(4): 35, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362837

RESUMO

Calcium phosphates are key biomaterials in dental treatment and bone regeneration. Biomaterials must exhibit antibacterial properties to prevent microbial infection in implantation frameworks. Previously, we developed various types of calcium phosphate powders (amorphous calcium phosphate, octacalcium phosphate (OCP), dicalcium phosphate anhydrate, and hydroxyapatite) with adsorbed protamine (which is a protein with antibacterial property) and confirmed their antibacterial property. In this study, as foundational research for the development of novel oral care materials, we synthesized calcium phosphate composite powders from three starting materials: i) OCP, which intercalates organic compounds, ii) protamine, which has antibacterial properties, and iii) F- ion, which promotes the formation of apatite crystals. Through investigating the preparation concentration of the F- ions and their loading into OCP, it was found that more F- ion could be loaded at higher concentrations regardless of the loading method. It was also observed that the higher the preparation concentration, the more the OCP converted to fluorapatite. The synthesized calcium phosphate composite powders were evaluated for biocompatibility through proliferation of MG-63 cells, with none of the powders exhibiting any growth inhibition. Antimicrobial tests showed that the calcium phosphate composite powders synthesized with protamine and F- ion by precipitation had enhanced antimicrobial properties than those synthesized by protamine adsorption. Thus, the calcium phosphate composite powder prepared from OCP, protamine, and F- ion forms the basis for promising antimicrobial biomaterials. Graphical abstract.


Assuntos
Anti-Infecciosos , Fluoretos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Fosfatos de Cálcio/química , Fluoretos/química , Pós , Protaminas
6.
Materials (Basel) ; 15(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35329627

RESUMO

Chelate-setting calcium-phosphate cements (CPCs) have been developed using inositol phosphate (IP6) as a chelating agent. However, the compressive strength of the CPC fabricated from a commercially available hydroxyapatite (HAp) powder was approximately 10 MPa. In this study, we miniaturized HAp particles as a starting powder to improve the compressive strength of chelate-setting CPCs and examined the adsorption properties of IP6 onto HAp powders. An HAp powder with a specific surface area (SSA) higher than 200 m2/g (HApHS) was obtained by ultrasonic irradiation for 1 min in a wet synthesis process, greatly improving the SSA (214 m2/g) of the commercial powder without ultrasonic irradiation. The HApHS powder was found to be a B-type carbonate-containing HAp in which the phosphate groups in apatite were replaced by carbonate groups. Owing to the high SSA, the HApHS powder also showed high IP6 adsorption capacity. The adsorption phenomena of IP6 to our HApHS and commercially available Hap powders were found to follow the Freundlich and Langmuir models, respectively. We found that IP6 adsorbs on the HApHS powder by both physisorption and chemisorption. The fine HapHS powder with a high SSA is a novel raw powder material, expected to improve the compressive strength of chelate-setting CPCs.

7.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884885

RESUMO

With the limitation of autografts, the development of alternative treatments for bone diseases to alleviate autograft-related complications is highly demanded. In this study, a tissue-engineered bone was formed by culturing rat bone marrow cells (RBMCs) onto porous apatite-fiber scaffolds (AFSs) with three-dimensional (3D) interconnected pores using a radial-flow bioreactor (RFB). Using the optimized flow rate, the effect of different culturing periods on the development of tissue-engineered bone was investigated. The 3D cell culture using RFB was performed for 0, 1 or 2 weeks in a standard medium followed by 0, 1 or 2 weeks in a differentiation medium. Osteoblast differentiation in the tissue-engineered bone was examined by alkaline phosphatase (ALP) and osteocalcin (OC) assays. Furthermore, the tissue-engineered bone was histologically examined by hematoxylin and eosin and alizarin red S stains. We found that the ALP activity and OC content of calcified cells tended to increase with the culture period, and the differentiation of tissue-engineered bone could be controlled by varying the culture period. In addition, the employment of RFB and AFSs provided a favorable 3D environment for cell growth and differentiation. Overall, these results provide valuable insights into the design of tissue-engineered bone for clinical applications.


Assuntos
Células da Medula Óssea/fisiologia , Durapatita , Osteogênese , Engenharia Tecidual , Alicerces Teciduais , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Animais , Reatores Biológicos , Técnicas de Cultura de Células em Três Dimensões , Diferenciação Celular , Células Cultivadas , Ratos , Ratos Wistar , Células-Tronco/fisiologia
8.
Biomed Mater ; 16(5)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34375969

RESUMO

Combating bacteria while promoting tissue regeneration is an aim of highest priority for employing biomaterials in orthopedics that often embroiled with pre-operative contamination. Through simulating a surgical site infection environment and an infected implant site, we showcase the ability of a functionally modified hydroxyapatite, Ag,Si-HA that permits preferential adhesion of human bone marrow derived mesenchymal stem cells (BMSCs) over co-cultured bacterial pathogen,Pseudomonas aeruginosa, by displaying immediate suppression and killing of the bacteria present with minimum cytotoxicity for 28 d. And, at the same time, Ag,Si-HA stimulates BMSCs towards osteogenic differentiation despite being within the contaminated milieu. These findings provide well-defined requirements for incorporating antibacterial properties to biomaterials in managing pre-operative contamination. In addition, it highlights the dual positive attributes of Ag,Si-HA as an effective antibacterial biomaterial and at the same time, promotes bone tissue regeneration.


Assuntos
Antibacterianos , Durapatita , Osteogênese/efeitos dos fármacos , Silício , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Durapatita/química , Durapatita/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Silício/química , Silício/farmacologia , Prata/química , Prata/farmacologia
9.
Sci Technol Adv Mater ; 22(1): 511-521, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34220339

RESUMO

Calcium-phosphate cements (CPCs) have been used as bone filling materials in orthopaedic surgery. However, CPCs are set using an acid-base reaction, and then change into stable hydroxyapatite (HAp) in a living body. Therefore, we developed bioresorbable chelate-setting ß-tricalcium phosphate (ß-TCP) cements based on surface modifications of inositol phosphate (IP6). In order to improve the bioresorbability, we fabricated IP6/ß-TCP cements hybridized with poly(lactic-co-glycolic acid) (PLGA) particles as a pore-forming agent. The compressive strengths of the cements with the amounts of 5 and 10 mass% PLGA particles were 23.2 and 22.8 MPa, respectively. There was no significant difference from cements without PLGA (23.4 MPa). The setting times of the cement specimens with PLGA particles (30 min) were a little longer than those without PLGA particles (26.3 min). The lack of cytotoxicity of the cement specimens was confirmed using osteoblast-like cells (MC3T3-E1). Cylindrical defects were made by drilling into the tibia of mini-pigs and injecting the prepared cement pastes into the defects. Twelve weeks after implantation the specimens were stained with toluidine blue and histologically evaluated. Histological evaluation of cement specimens with PLGA particles showed enhanced bioresorbability. Newly-formed bone was also observed inside cement specimens with PLGA particles. The IP6/ß-TCP cement specimens with PLGA particles had excellent material properties, such as injectability, compressive strength, high porosity, no cytotoxicity in vitro, bioresorption and bone formation abilities in vivo. Organic-inorganic hybridized CPCs are expected to be valuable as novel biodegradable paste-like artificial bone fillers.

10.
Mater Sci Eng C Mater Biol Appl ; 125: 112083, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33965099

RESUMO

Calcium carbonate is used as bone-filling material due to its good biocompatibility, bioactivity, and bioabsorbability, but the prevalence of infectious complications associated with calcium carbonate has created a persisting challenge in the treatment of bone defect. Therefore, this greatly necessitate the need to endow calcium carbonate with antibacterial properties. In this study, calcium carbonate powders loaded with silver nanoparticles (Ag-CaCO3) were prepared in attempt to serve as a novel antibacterial inorganic filler material. This objective was achieved using ultrasonic spray-pyrolysis (USSP) route to produce Ag-CaCO3 with 1, 5 and 10 mol% silver. The size of silver nanoparticles on CaCO3 microspheres could be regulated by adjusting silver concentration to facilitate effective release of Ag+ ions. This was demonstrated in Ag-CaCO3 (1), where the lowest silver content at 1 mol% achieved the highest Ag+ ions release over 28 days. This in turn gave rise to effective antibacterial efficiency against Staphylococcus aureus and Escherichia coli. Furthermore, CaCO3 (1) could also support osteoblast-like cells (MG-63) at a cell viability of 80%. Overall, this work extends the capabilities in employing USSP to produce inorganic filler materials with sustained antibacterial properties, bringing one step closer to the development of antibacterial products.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Carbonato de Cálcio/farmacologia , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana , Prata/farmacologia , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA