Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 67(10): 3899-3906, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28895518

RESUMO

A Gram-stain-positive, catalase-negative and short-rod-shaped organism, designated VTT E-94560, was isolated from beer in Finland and deposited in the VTT culture collection as a strain of Lactobacillus rossiae. However, the results of 16S rRNA gene sequence analysis showed that VTT E-94560 was only related to Lactobacillus rossiae JCM 16176T with 97.0 % sequence similarity, lower than the 98.7 % regarded as the boundary for the species differentiation. Additional phylogenetic studies on the pheS gene, rpoA gene and 16S-23S rRNA internally transcribed spacer region further reinforced the taxonomically independent status of VTT E-94560 and its related Lactobacillus species including L. rossiae and Lactobacillus siliginis. Strain VTT E-94560 also exhibited several differences in its carbohydrate fermentation profiles from those related Lactobacillus species. In addition, DNA-DNA relatedness between VTT E-94560 and these two type strains was 4 % (L. rossiae JCM 16176T) and 12 % (L. siliginins JCM 16155T), respectively, which were lower than the 70 % cut-off for general species delineation, indicating that these three strains are not taxonomically identical at the species level. These studies revealed that VTT E-94560 represents a novel species, for which the name Lactobacillus curtus sp. nov. is proposed. The type strain is VTT E-94560T (=JCM 31185T).


Assuntos
Cerveja/microbiologia , Microbiologia de Alimentos , Lactobacillus/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Finlândia , Genes Bacterianos , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Hibridização de Ácido Nucleico , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
J Biosci Bioeng ; 122(5): 577-582, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27212268

RESUMO

One of the key processes in making beer is fermentation. In the fermentation process, brewer's yeast plays an essential role in both the production of ethanol and the flavor profile of beer. Therefore, the mechanism of ethanol fermentation by of brewer's yeast is attracting much attention. The high ethanol productivity of sake yeast has provided a good basis from which to investigate the factors that regulate the fermentation rates of brewer's yeast. Recent studies found that the elevated fermentation rate of sake Saccharomyces cerevisiae species is closely related to a defective transition from vegetative growth to the quiescent (G0) state. In the present study, to clarify the relationship between the fermentation rate of brewer's yeast and entry into G0, we constructed two types of mutant of the bottom-fermenting brewer's yeast Saccharomyces pastorianus Weihenstephan 34/70: a RIM15 gene disruptant that was defective in entry into G0; and a CLN3ΔPEST mutant, in which the G1 cyclin Cln3p accumulated at high levels. Both strains exhibited higher fermentation rates under high-maltose medium or high-gravity wort conditions (20° Plato) as compared with the wild-type strain. Furthermore, G1 arrest and/or G0 entry were defective in both the RIM15 disruptant and the CLN3ΔPEST mutant as compared with the wild-type strain. Taken together, these results indicate that regulation of the G0/G1 transition might govern the fermentation rate of bottom-fermenting brewer's yeast in high-gravity wort.


Assuntos
Ciclinas/genética , Etanol/metabolismo , Fermentação/genética , Proteínas Quinases/genética , Fase de Repouso do Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Bebidas Alcoólicas , Cerveja , Reatores Biológicos/microbiologia , Ciclinas/metabolismo , Aromatizantes/metabolismo , Hipergravidade , Maltose , Organismos Geneticamente Modificados , Proteínas Quinases/metabolismo , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...