Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-8, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147404

RESUMO

Cancer is a complex disease characterized by the uncontrolled growth of abnormal cells, leading to the formation of tumours. STK17B, a member of the DAPK family, has been implicated in various cancers and is considered a potential therapeutic target. However, no drug in the market has been approved for the treatment of STK17 B-associated cancer disease. This research aimed to identify direct inhibitors of STK17B using computational techniques. Ligand-based virtual screening and molecular docking were performed, resulting in the selection of three lead compounds (CID_135698391, CID_135453100, CID_136599608) with superior binding affinities compared to the reference compound dovitinib. While molecular docking simulation revealed specific interactions between the lead compounds and key amino acid residues at the binding pocket of STK17B, molecular dynamics simulations demonstrated that CID_135453100 and CID_136599608 exhibit stable conformations and comparable flexibility to dovitinib. However, CID_135698391 did not perform well using this metric as it displayed poor stability. Overall, small-molecule compounds CID_135453100 and CID_136599608 showed promising binding interactions and stability, suggesting their potential as direct inhibitors of STK17B. These findings could contribute to the exploration of novel therapeutic options targeting STK17B in cancer treatment.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-10, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578044

RESUMO

The regulation of the p53 tumor suppressor pathway is critically dependent on the activity of Murine Double Minute 2 (MDM2) and Murine Double Minute X (MDMX) proteins. In certain types of cancer cells, excessive amount of MDMX can poly-ubiquitinate p53, which can result in its degradation, leading to a subsequent reduction in the levels of this protein. Therefore, the design of small-molecule inhibitors targeting the MDMX-p53 interaction has emerged as a promising strategy for cancer therapy. In this study, we employed computational techniques including pharmacophore modeling and molecular docking to identify three potential small molecule inhibitors (CID_25094615, CID_137634453, and CID_25094344) of the MDMX-p53 interaction from a PubChem database. Molecular dynamics of 100000 ps were conducted to assess the stability of the MDMX-inhibitor complexes. Our results showed that all three compounds exhibit stable binding with MDMX, with significantly lower root mean square deviation (RMSD) and fluctuation (RMSF) values than the control ligand, indicating superior stability. Additionally, the three compounds exhibit stronger intermolecular hydrogen bond (HBOND) interactions compared to the control, suggesting stronger stability. Overall, our findings highlight the potential of these compounds as lead candidates for the development of novel anticancer agents that target the MDMX-p53 interaction.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...