Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Small ; : e2400351, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874126

RESUMO

Schwarzites are porous (spongy-like) carbon allotropes with negative Gaussian curvatures. They are proposed by Mackay and Terrones inspired by the works of the German mathematician Hermann Schwarz on Triply-Periodic Minimal Surfaces (TPMS). This review presents and discusses the history of schwarzites and their place among curved carbon nanomaterials. The main works on schwarzites are summarized and are available in the literature. Their unique structural, electronic, thermal, and mechanical properties are discussed. Although the synthesis of carbon-based schwarzites remains elusive, recent advances in the synthesis of zeolite-templates nanomaterials have brought them closer to reality. Atomic-based models of schwarzites are translated into macroscale ones that are 3D-printed. These 3D-printed models are exploited in many real-world applications, including water remediation and biomedical ones.

2.
Nano Lett ; 20(1): 284-291, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31794217

RESUMO

One-dimensional defects in two-dimensional (2D) materials can be particularly damaging because they directly impede the transport of charge, spin, or heat and can introduce a metallic character into otherwise semiconducting systems. Current characterization techniques suffer from low throughput and a destructive nature or limitations in their unambiguous sensitivity at the nanoscale. Here we demonstrate that dark-field second harmonic generation (SHG) microscopy can rapidly, efficiently, and nondestructively probe grain boundaries and edges in monolayer dichalcogenides (i.e., MoSe2, MoS2, and WS2). Dark-field SHG efficiently separates the spatial components of the emitted light and exploits interference effects from crystal domains of different orientations to localize grain boundaries and edges as very bright 1D patterns through a Cerenkov-type SHG emission. The frequency dependence of this emission in MoSe2 monolayers is explained in terms of plasmon-enhanced SHG related to the defect's metallic character. This new technique for nanometer-scale imaging of the grain structure, domain orientation and localized 1D plasmons in 2D different semiconductors, thus enables more rapid progress toward both applications and fundamental materials discoveries.

3.
Phys Chem Chem Phys ; 18(22): 14776-81, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189765

RESUMO

This communication report is a study on the structural and dynamical aspects of boron nitride nanotubes (BNNTs) shot at high velocities (∼5 km s(-1)) against solid targets. The experimental results show unzipping of BNNTs and the formation of hBN nanoribbons. Fully atomistic reactive molecular dynamics simulations were also carried out to gain insights into the BNNT fracture patterns and deformation mechanisms. Our results show that longitudinal and axial tube fractures occur, but the formation of BN nanoribbons from fractured tubes was only observed for some impact angles. Although some structural and dynamical features of the impacts are similar to the ones reported for CNTs, because BNNTs are more brittle than CNTs this results in a larger number of fractured tubes but with fewer formed nanoribbons.

4.
J Phys Chem B ; 117(21): 6524-33, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23607578

RESUMO

In this work a self-assembly technique is presented, allowing the fast formation of carbon black thin films. It consists in the controlled addition of a stable carbon material's dispersion over the water surface, disturbed by a vortex. The vortex, although not essential for the film formation, was found to drastically improve film homogeneity. A physical chemical study concerning how several parameters could be used to tune film properties was also conducted. The self-assembled films, which can be picked up in any hydrophilic substrate, showed a good electrical conductivity and a high optical transparency. As an application example, films about 200 nm thick were employed as supercapacitor electrodes.

5.
Nanotechnology ; 23(32): 325601, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22825368

RESUMO

In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI(3)), it was possible to form covalent bonds between the Ga(3+) ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy.

6.
ACS Nano ; 4(6): 3318-24, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20481513

RESUMO

The electrical properties of random networks of single-wall carbon nanotubes (SWNTs) obtained by inkjet printing are studied. Water-based stable inks of functionalized SWNTs (carboxylic acid, amide, poly(ethylene glycol), and polyaminobenzene sulfonic acid) were prepared and applied to inkjet deposit microscopic patterns of nanotube films on lithographically defined silicon chips with a back-side gate arrangement. Source-drain transfer characteristics and gate-effect measurements confirm the important role of the chemical functional groups in the electrical behavior of carbon nanotube networks. Considerable nonlinear transport in conjunction with a high channel current on/off ratio of approximately 70 was observed with poly(ethylene glycol)-functionalized nanotubes. The positive temperature coefficient of channel resistance shows the nonmetallic behavior of the inkjet-printed films. Other inkjet-printed field-effect transistors using carboxyl-functionalized nanotubes as source, drain, and gate electrodes, poly(ethylene glycol)-functionalized nanotubes as the channel, and poly(ethylene glycol) as the gate dielectric were also tested and characterized.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Transistores Eletrônicos , Periféricos de Computador , Condutividade Elétrica , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Nano Lett ; 10(2): 366-72, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19691280

RESUMO

We report the use of transition metal nanoparticles (Ni or Co) to longitudinally cut open multiwalled carbon nanotubes in order to create graphitic nanoribbons. The process consists of catalytic hydrogenation of carbon, in which the metal particles cut sp(2) hybridized carbon atoms along nanotubes that results in the liberation of hydrocarbon species. Observations reveal the presence of unzipped nanotubes that were cut by the nanoparticles. We also report the presence of partially open carbon nanotubes, which have been predicted to have novel magnetoresistance properties.(1) The nanoribbons produced are typically 15-40 nm wide and 100-500 nm long. This method offers an alternative approach for making graphene nanoribbons, compared to the chemical methods reported recently in the literature.


Assuntos
Nanocompostos/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Catálise , Cobalto/química , Desenho de Equipamento , Grafite/química , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Níquel/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA