Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(34): 9877-80, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27355989

RESUMO

The NiAs-type structure is one of the most common structures in solids, but metal order has been almost exclusively limited to chalcogenides. The synthesis of HfMnSb2 is reported with a novel metal-ordered NiAs-type structure. HfMnSb2 undergoes a conical spin order below 270 K, in marked contrast to conventional magnetic order observed in NiAs-type pnictides. We argue that the layered arrangement of Hf and Mn makes it a quasi 2D magnet, where the Mn layers with localized magnetic moments (Mn(2+) ; S=5/2) can interact only through RKKY interactions, instead of metal-metal bonding that is otherwise dominant for typical NiAs-type pnictides. This result suggests that controlling order-disorder in NiAs-type pnictides enables a study of 2D-to-3D crossover behavior in itinerant magnetic system.

2.
J Am Chem Soc ; 137(31): 9804-7, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26200135

RESUMO

An ideal one-dimensional (1D) magnet is expected to show exotic quantum phenomena. For compounds with larger S (S = 3/2, 2, 5/2, ...), however, a small interchain interaction J' tends to drive a conventional long-range ordered (LRO) state. Here, a new layered structure of FeF3(4,4'-bpy) (4,4'-bpy = 4,4'-bipyridyl) with novel S = 5/2 (Fe(3+)) chains has been hydrothermally synthesized by using 4,4'-bpy to separate chains. The temperature-dependent susceptibility exhibits a broad maximum at high as 164 K, suggesting a fairly strong Fe-F-Fe intrachain interaction J. However, no anomaly associated with a LRO is seen in both magnetic susceptibility and specific heat even down to 2 K. This indicates an extremely small J' with J'/J < 3.2 × 10(-5), making this new material a nearly ideal 1D antiferromagnet. Mössbauer spectroscopy at 2.7 K reveals a critical slowing down of the 1D fluctuations toward a possible LRO at lower temperatures.

3.
Inorg Chem ; 52(10): 6096-102, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23651445

RESUMO

The synthesis of Sr2FeO3 through a hydride reduction of the Ruddlesden-Popper layered perovskite Sr2FeO4 is reported. Rietveld refinements using synchrotron and neutron powder diffraction data revealed that the structure contains corner-shared FeO4 square-planar chains running along the [010] axis, being isostructural with Sr2CuO3 (Immm space group). Fairly strong Fe-O-Fe and Fe-Fe interactions along [010] and [100], respectively, make it an S = 2 quasi two-dimensional (2D) rectangular lattice antiferromagnet. This compound represents the end-member (n = 1) of the serial system Sr(n+1)FenO(2n+1), together with previously reported Sr3Fe2O5 (n = 2) and SrFeO2 (n = ∞), thus giving an opportunity to study the 2D-to-3D dimensional crossover. Neutron diffraction and Mössbauer spectroscopy show the occurrence of G-type antiferromagnetic order below 179 K, which is, because of dimensional reduction, significantly lower than those of the other members, 296 K in Sr3Fe2O5 and 468 K in SrFeO2. However, the temperature dependence of magnetic moment shows a universal behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...