Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 13(1): 399, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105264

RESUMO

Maternal obesity has been recognized as a stressor affecting the developing fetal brain, leading to long-term negative outcomes comparable to those resulting from maternal psychological stress, although the mechanisms have not been completely elucidated. In this study, we tested the hypothesis that adverse prenatal conditions as diverse as maternal stress and maternal obesity might affect emotional regulation and stress response in the offspring through common pathways, with a main focus on oxidative stress and neuroplasticity. We contrasted and compared adolescent male and female offspring in two mouse models of maternal psychophysical stress (restraint during pregnancy - PNS) and maternal obesity (high-fat diet before and during gestation - mHFD) by combining behavioral assays, evaluation of the hypothalamic-pituitary-adrenal (HPA) axis reactivity, immunohistochemistry and gene expression analysis of selected markers of neuronal function and neuroinflammation in the hippocampus, a key region involved in stress appraisal. Prenatal administration of the antioxidant N-acetyl-cysteine (NAC) was used as a strategy to protect fetal neurodevelopment from the negative effects of PNS and mHFD. Our findings show that these two stressors produce overlapping effects, reducing brain anti-oxidant defenses (Nrf-2) and leading to sex-dependent impairments of hippocampal Bdnf expression and alterations of the emotional behavior and HPA axis functionality. Prenatal NAC administration, by restoring the redox balance, was able to exert long-term protective effects on brain development, suggesting that the modulation of redox pathways might be an effective strategy to target common shared mechanisms between different adverse prenatal conditions.


Assuntos
Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Camundongos , Gravidez , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Obesidade Materna/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo
2.
Transl Psychiatry ; 12(1): 384, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104346

RESUMO

Autism Spectrum Disorder (ASD) is a sex-biased neurodevelopmental disorder with a male to female prevalence of 4:1, characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests or activities. Microbiota alterations as well as signs of neuroinflammation have been also reported in ASD. The involvement of immune dysregulation in ASD is further supported by evidence suggesting that maternal immune activation (MIA), especially during early pregnancy, may be a risk factor for ASD. The present study was aimed at characterizing the effects of MIA on behavior, gut microbiota and neuroinflammation in the mouse offspring also considering the impact of MIA in the two sexes. MIA offspring exhibited significant ASD-like behavioral alterations (i.e., deficits in sociability and sensorimotor gating, perseverative behaviors). The analysis of microbiota revealed changes in specific microbial taxa that recapitulated those seen in ASD children. In addition, molecular analyses indicated sex-related differences in the neuroinflammatory responses triggered by MIA, with a more prominent effect in the cerebellum. Our data suggest that both sexes should be included in the experimental designs of preclinical studies in order to identify those mechanisms that confer different vulnerability to ASD to males and females.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Microbioma Gastrointestinal , Animais , Transtorno do Espectro Autista/complicações , Transtorno Autístico/etiologia , Comportamento Animal , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Gravidez
3.
Nutrients ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956326

RESUMO

Obesity is a main risk factor for the onset and the precipitation of many non-communicable diseases. This condition, which is associated with low-grade chronic systemic inflammation, is of main concern during pregnancy leading to very serious consequences for the new generations. In addition to the prominent role played by the adipose tissue, dysbiosis of the maternal gut may also sustain the obesity-related inflammatory milieu contributing to create an overall suboptimal intrauterine environment. Such a condition here generically defined as "inflamed womb" may hold long-term detrimental effects on fetal brain development, increasing the vulnerability to mental disorders. In this review, we will examine the hypothesis that maternal obesity-related gut dysbiosis and the associated inflammation might specifically target fetal brain microglia, the resident brain immune macrophages, altering neurodevelopmental trajectories in a sex-dependent fashion. We will also review some of the most promising nutritional strategies capable to prevent or counteract the effects of maternal obesity through the modulation of inflammation and oxidative stress or by targeting the maternal microbiota.


Assuntos
Microbiota , Transtornos do Neurodesenvolvimento , Obesidade Materna , Disbiose/complicações , Feminino , Humanos , Inflamação/complicações , Transtornos do Neurodesenvolvimento/etiologia , Obesidade/complicações , Obesidade Materna/complicações , Gravidez , Fatores de Risco
4.
Nutrients ; 14(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35565817

RESUMO

Research in both animals and humans shows that some nutrients are important in pregnancy and during the first years of life to support brain and cognitive development. Our aim was to evaluate the role of selenium (Se) in supporting brain and behavioral plasticity and maturation. Pregnant and lactating female rats and their offspring up to postnatal day 40 were fed isocaloric diets differing in Se content-i.e., optimal, sub-optimal, and deficient-and neurodevelopmental, neuroinflammatory, and anti-oxidant markers were analyzed. We observed early adverse behavioral changes in juvenile rats only in sub-optimal offspring. In addition, sub-optimal, more than deficient supply, reduced basal glial reactivity in sex dimorphic and brain-area specific fashion. In female offspring, deficient and sub-optimal diets reduced the antioxidant Glutathione peroxidase (GPx) activity in the cortex and in the liver, the latter being the key organ regulating Se metabolism and homeostasis. The finding that the Se sub-optimal was more detrimental than Se deficient diet may suggest that maternal Se deficient diet, leading to a lower Se supply at earlier stages of fetal development, stimulated homeostatic mechanisms in the offspring that were not initiated by sub-optimal Se. Our observations demonstrate that even moderate Se deficiency during early life negatively may affect, in a sex-specific manner, optimal brain development.


Assuntos
Selênio , Animais , Antioxidantes/farmacologia , Dieta , Feminino , Glutationa Peroxidase/metabolismo , Humanos , Lactação , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos
5.
Cancer Discov ; 12(3): 712-729, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34737188

RESUMO

The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling and drug screening in newly established patient-derived models in vitro and in vivo. We identified in vitro sensitivity to MEK inhibitors in DIPGs harboring MAPK pathway alterations, but treatment of patient-derived xenograft models and a patient at relapse failed to elicit a significant response. We generated trametinib-resistant clones in a BRAFG469V model through continuous drug exposure and identified acquired mutations in MEK1/2 with sustained pathway upregulation. These cells showed hallmarks of mesenchymal transition and expression signatures overlapping with inherently trametinib-insensitive patient-derived cells, predicting sensitivity to dasatinib. Combined trametinib and dasatinib showed highly synergistic effects in vitro and on ex vivo brain slices. We highlight the MAPK pathway as a therapeutic target in DIPG and show the importance of parallel resistance modeling and combinatorial treatments for meaningful clinical translation. SIGNIFICANCE: We report alterations in the MAPK pathway in DIPGs to confer initial sensitivity to targeted MEK inhibition. We further identify for the first time the mechanism of resistance to single-agent targeted therapy in these tumors and suggest a novel combinatorial treatment strategy to overcome it in the clinic. This article is highlighted in the In This Issue feature, p. 587.


Assuntos
Neoplasias do Tronco Encefálico , Recidiva Local de Neoplasia , Criança , Humanos , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno , Recidiva Local de Neoplasia/tratamento farmacológico , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Neuro Oncol ; 24(7): 1150-1163, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964902

RESUMO

BACKGROUND: Diffuse midline gliomas (DMG) H3K27M-mutant, including diffuse intrinsic pontine glioma (DIPG), are pediatric brain tumors associated with grim prognosis. Although GD2-CAR T-cells demonstrated significant anti-tumor activity against DMG H3K27M-mutant in vivo, a multimodal approach may be needed to more effectively treat patients. We investigated GD2 expression in DMG/DIPG and other pediatric high-grade gliomas (pHGG) and sought to identify chemical compounds that would enhance GD2-CAR T-cell anti-tumor efficacy. METHODS: Immunohistochemistry in tumor tissue samples and immunofluorescence in primary patient-derived cell lines were performed to study GD2 expression. We developed a high-throughput cell-based assay to screen 42 kinase inhibitors in combination with GD2-CAR T-cells. Cell viability, western blots, flow-cytometry, real time PCR experiments, DIPG 3D culture models, and orthotopic xenograft model were applied to investigate the effect of selected compounds on DIPG cell death and CAR T-cell function. RESULTS: GD2 was heterogeneously, but widely, expressed in the tissue tested, while its expression was homogeneous and restricted to DMG/DIPG H3K27M-mutant cell lines. We identified dual IGF1R/IR antagonists, BMS-754807 and linsitinib, able to inhibit tumor cell viability at concentrations that do not affect CAR T-cells. Linsitinib, but not BMS-754807, decreases activation/exhaustion of GD2-CAR T-cells and increases their central memory profile. The enhanced anti-tumor activity of linsitinib/GD2-CAR T-cell combination was confirmed in DIPG models in vitro, ex vivo, and in vivo. CONCLUSION: Our study supports the development of IGF1R/IR inhibitors to be used in combination with GD2-CAR T-cells for treating patients affected by DMG/DIPG and, potentially, by pHGG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Imunoterapia Adotiva , Receptor IGF Tipo 1 , Receptor de Insulina , Neoplasias do Tronco Encefálico/patologia , Criança , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Linfócitos T/metabolismo
7.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942636

RESUMO

The intratumor heterogeneity represents one of the most difficult challenges for the development of effective therapies to treat pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG). These brain tumors are composed of heterogeneous cell subpopulations that coexist and cooperate to build a functional network responsible for their aggressive phenotype. Understanding the cellular and molecular mechanisms sustaining such network will be crucial for the identification of new therapeutic strategies. To study more in-depth these mechanisms, we sought to apply the Multifluorescent Marking Technology. We generated multifluorescent pGBM and DIPG bulk cell lines randomly expressing six different fluorescent proteins and from which we derived stable optical barcoded single cell-derived clones. In this study, we focused on the application of the Multifluorescent Marking Technology in 2D and 3D in vitro/ex vivo culture systems. We discuss how we integrated different multimodal fluorescence analysis platforms, identifying their strengths and limitations, to establish the tools that will enable further studies on the intratumor heterogeneity and interclonal interactions in pGBM and DIPG.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glioma/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Glioblastoma/metabolismo , Glioma/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/metabolismo , Pediatria , Tecnologia/métodos
8.
J Clin Med ; 8(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547098

RESUMO

Adverse psychosocial experiences have been shown to modulate individual responses to immune challenges and affect mitochondrial functions. The aim of this study was to investigate inflammation and immune responses as well as mitochondrial bioenergetics in an experimental model of Paediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS). Starting in adolescence (postnatal day 28), male SJL/J mice were exposed to five injections (interspaced by two weeks) with Group-A beta-haemolytic streptococcus (GAS) homogenate. Mice were exposed to chronic psychosocial stress, in the form of protracted visual exposure to an aggressive conspecific, for four weeks. Our results indicate that psychosocial stress exacerbated individual response to GAS administrations whereby mice exposed to both treatments exhibited altered cytokine and immune-related enzyme expression in the hippocampus and hypothalamus. Additionally, they showed impaired mitochondrial respiratory chain complexes IV and V, and reduced adenosine triphosphate (ATP) production by mitochondria and ATP content. These brain abnormalities, observed in GAS-Stress mice, were associated with blunted titers of plasma corticosterone. Present data support the hypothesis that challenging environmental conditions, in terms of chronic psychosocial stress, may exacerbate the long-term consequences of exposure to GAS processes through the promotion of central immunomodulatory and oxidative stress.

9.
Brain Behav Immun ; 81: 484-494, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31279682

RESUMO

An increasing number of studies show that both inflammation and neural plasticity act as key players in the vulnerability and recovery from psychiatric disorders and neurodegenerative diseases. However, the interplay between these two players has been limitedly explored. In fact, while a few studies reported an immune activation, others conveyed an immune suppression, associated with an impairment in neural plasticity. Therefore, we hypothesized that deviations in inflammatory levels in both directions may impair neural plasticity. We tested this hypothesis experimentally, by acute treatment of C57BL/6 adult male mice with different doses of two inflammatory modulators: lipopolysaccharide (LPS), an endotoxin, and ibuprofen (IBU), a nonselective cyclooxygenase inhibitor, which are respectively a pro- and an anti-inflammatory agent. The results showed that LPS and IBU have different effects on behavior and inflammatory response. LPS treatment induced a reduction of body temperature, a decrease of body weight and a reduced food and liquid intake. In addition, it led to increased levels of inflammatory markers expression, both in the total hippocampus and in isolated microglia cells, including Interleukin (IL)-1ß, and enhanced the concentration of prostaglandin E2 (PGE2). On the other hand, IBU increased the level of anti-inflammatory markers, decreased tryptophan 2,3-dioxygenase (TDO2), the first step in the kynurenine pathway known to be activated during inflammatory conditions, and PGE2 levels. Though LPS and IBU administration differently affected mediators related with pro- or anti-inflammatory responses, they produced overlapping effects on neural plasticity. Indeed, higher doses of both LPS and IBU induced a statistically significant decrease in the amplitude of long-term potentiation (LTP), in Brain-Derived Neurotrophic Factor (BDNF) expression levels and in the phosphorylation of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluR1, compared to the control group. Such effect appears to be dose-dependent since only the higher, but not the lower, dose of both compounds led to a plasticity impairment. Overall, the present findings indicate that acute treatment with pro- and anti-inflammatory agents impair neural plasticity in a dose dependent manner.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Inflamação/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Citocinas/imunologia , Citocinas/metabolismo , Dinoprostona/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ibuprofeno/farmacologia , Inflamação/imunologia , Interleucina-1beta/metabolismo , Cinurenina/metabolismo , Lipopolissacarídeos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Plasticidade Neuronal/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Sci Rep ; 9(1): 4572, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872738

RESUMO

Mutations of Fused in sarcoma (FUS), a ribonucleoprotein involved in RNA metabolism, have been found associated with both familial and sporadic cases of amyotrophic lateral sclerosis (ALS). Notably, besides mutations in the coding sequence, also mutations into the 3' untranslated region, leading to increased levels of the wild-type protein, have been associated with neuronal death and ALS pathology, in ALS models and patients. The mechanistic link between altered FUS levels and ALS-related neurodegeneration is far to be elucidated, as well as the consequences of elevated FUS levels in the modulation of the inflammatory response sustained by glial cells, a well-recognized player in ALS progression. Here, we studied the effect of wild-type FUS overexpression on the responsiveness of mouse and human neural progenitor-derived astrocytes to a pro-inflammatory stimulus (IL1ß) used to mimic an inflammatory environment. We found that astrocytes with increased FUS levels were more sensitive to IL1ß, as shown by their enhanced expression of inflammatory genes, compared with control astrocytes. Moreover, astrocytes overexpressing FUS promoted neuronal cell death and pro-inflammatory microglia activation. We conclude that overexpression of wild-type FUS intrinsically affects astrocyte reactivity and drives their properties toward pro-inflammatory and neurotoxic functions, suggesting that a non-cell autonomous mechanism can support neurodegeneration in FUS-mutated animals and patients.


Assuntos
Astrócitos/metabolismo , Regulação da Expressão Gênica , Microglia/metabolismo , Neurônios/metabolismo , Proteína FUS de Ligação a RNA/genética , Animais , Biomarcadores , Morte Celular , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação , Camundongos , Neurônios Motores/metabolismo , Mutação , Transporte Proteico , Proteína FUS de Ligação a RNA/metabolismo
11.
J Exp Clin Cancer Res ; 35: 55, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27015814

RESUMO

BACKGROUND: The CXCL12/CXCR4 pathway regulates tumor cell proliferation, metastasis, angiogenesis and the tumor-microenvironment cross-talk in several solid tumors, including glioblastoma (GBM), the most common and fatal brain cancer. In the present study, we evaluated the effects of peptide R, a new specific CXCR4 antagonist that we recently developed by a ligand-based approach, in an in vitro and in vivo model of GBM. The well-characterized CXCR4 antagonist Plerixafor was also included in the study. METHODS: The effects of peptide R on CXCR4 expression, cell survival and migration were assessed on the human glioblastoma cell line U87MG exposed to CXCL12, by immunofluorescence and western blotting, MTT assay, flow cytometry and transwell chamber migration assay. Peptide R was then tested in vivo, by using U87MG intracranial xenografts in CD1 nude mice. Peptide R was administered for 23 days since cell implantation and tumor volume was assessed by magnetic resonance imaging (MRI) at 4.7 T. Glioma associated microglia/macrophage (GAMs) polarization (anti-tumor M1 versus pro-tumor M2 phenotypes) and expressions of vascular endothelial growth factor (VEGF) and CD31 were assessed by immunohistochemistry and immunofluorescence. RESULTS: We found that peptide R impairs the metabolic activity and cell proliferation of human U87MG cells and stably reduces CXCR4 expression and cell migration in response to CXCL12 in vitro. In the orthotopic U87MG model, peptide R reduced tumor cellularity, promoted M1 features of GAMs and astrogliosis, and hindered intra-tumor vasculature. CONCLUSIONS: Our findings suggest that targeting CXCR4 by peptide R might represent a novel therapeutic approach against GBM, and contribute to the rationale to further explore in more complex pre-clinical settings the therapeutic potential of peptide R, alone or in combination with standard therapies of GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Quimiocina CXCL12/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Microglia/efeitos dos fármacos , Peptídeos/administração & dosagem , Receptores CXCR4/antagonistas & inibidores , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Microglia/patologia , Peptídeos/farmacologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Brain Behav Immun ; 55: 225-235, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26593276

RESUMO

Repeated stimulation of TLR4 signaling by lipopolysaccharide (LPS) in microglia induces a state of tolerance/sensitization consisting in the reprogramming of the expression of pro-inflammatory genes in favor of anti-inflammatory ones. The molecular mechanisms underlying this adaptive response are far to be elucidated. Glycogen synthase kinase 3 (GSK3) has emerged as crucial regulator of TLR signaling, mediating the balance between pro- and anti-inflammatory functions in both periphery and central nervous system. The present study extends this notion identifying GSK3 as part of the molecular machinery regulating the LPS-adaptive response in microglial cells, by using primary microglial cultures and organotypic hippocampal slices (OHSCs). We found that lithium chloride (LiCl), a widely used GSK3 inhibitor and the mainstay treatment for bipolar disorder, reinforced the LPS adaptive response by enhancing both downregulation of pro-inflammatory genes (inducible nitric oxide synthase, interleukin 1ß, interleukin 6, tumor necrosis factor α), and upregulation of genes typically associated to anti-inflammatory functions (interleukin 10 and MRC1). The effects of GSK3 inhibition were mimicked by Wnt3a, added exogenously, and reversed by Inhibitor of Wnt-Response-1-endo, a pharmacological disruptor of the canonical Wnt/ß-catenin pathway, and GW9662, a selective peroxisome proliferator activated receptor γ antagonist, suggesting that these two pathways are involved in the regulation of LPS-tolerance/sensitization by GSK. Finally, LiCl treatment of OHSCs enhanced the protective functional consequences of the microglial adaptive response to LPS on oligodendrocyte maturation, as indicated by MBP mRNA upregulation. These results further indicate GSK3 as key component in the orchestration of neuroinflammation and target for neuroprotective strategies.


Assuntos
Endotoxinas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Cloreto de Lítio/farmacologia , Microglia/metabolismo , PPAR gama/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Wnt3A/metabolismo , Animais , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Ratos , Ratos Wistar
13.
J Neurochem ; 135(1): 147-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173855

RESUMO

Microglial activation is a dynamic process, central to neuroinflammation, which can have beneficial or pathogenic effects to human health. Mitochondria are key players in neuroinflammatory and neurodegenerative processes, common to most brain diseases. To the best of our knowledge on the role of mitochondria in the modulation of neuroinflammation, we focused on the mitochondrial uncoupling protein-2 (UCP2), known to control mitochondrial functions and to be implicated in a variety of physiological and pathological processes. In primary microglial cultures, the M1 stimulus lipopolysaccharide induced an early and transitory decrease in UCP2 levels. The initial UCP2 down-regulation was paralleled by mitochondrial inner membrane potential (mMP) depolarization and increased mitochondrial reactive oxygen species production. The key role of UCP2 in controlling mMP and reactive oxygen species production was confirmed by both pharmacological inhibition and down-regulation by RNA interference. Additionally, UCP2-silenced microglia stimulated with lipopolysaccharide showed an enhanced inflammatory response, characterized by a greater production of nitric oxide and interleukin-6. UCP2 was differently regulated by M2 stimuli, as indicated by its persistent up-regulation by interleukin-4. In UCP2-silenced microglia, interleukin-4 failed to induce M2 genes (mannose receptor 1 and interleukin-10) and to reduce M1 genes (inducible nitric oxide synthase and tumour necrosis factor-α). Our findings indicate that UCP2 is central to the process of microglial activation, with opposite regulation of M1 and M2 responses, and point to UCP2 manipulation as a potential strategy for redirecting microglial response towards protective phenotypes in several brain diseases where neuroinflammation is recognized to contribute to neurodegeneration. We show that the mitochondrial uncoupling protein-2 (UCP2) is central to the process of microglial activation, with opposite regulation of M1 and M2 responses. In UCP2-silenced microglia, lipopolysaccharide (LPS) triggers an enhanced inflammatory response characterized by a greater expression of M1 genes, whereas interleukin-4 (IL-4) fails in inducing M2 genes and reducing M1 genes. We propose UCP2 manipulation as a potential strategy for redirecting microglial response towards protective phenotypes.


Assuntos
Canais Iônicos/metabolismo , Microglia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Interleucina-4/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Microglia/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 2 , Regulação para Cima
14.
Free Radic Biol Med ; 73: 41-50, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24794409

RESUMO

Phytoprostanes (PhytoP's) are formed in higher plants from α-linolenic acid via a nonenzymatic free radical-catalyzed pathway and act as endogenous mediators capable of protecting cells from damage under various conditions related to oxidative stress. Humans are exposed to PhytoP's, as they are present in relevant quantities in vegetable food and pollen. The uptake of PhytoP's through the olfactory epithelium of the nasal mucosa, upon pollen grain inhalation, is of interest as the intranasal pathway is regarded as a direct route of communication between the environment and the brain. On this basis, we sought to investigate the potential activities of PhytoP's on immature cells of the central nervous system, which are particularly susceptible to oxidative stress. In neuroblastoma SH-SY5Y cells, used as a model for undifferentiated neurons, B1-PhytoP's, but not F1-PhytoP's, increased cell metabolic activity and protected them from oxidant damage caused by H2O2. Moreover, B1-PhytoP's induced a moderate depolarization of the mitochondrial inner membrane potential. These effects were prevented by the PPAR-γ antagonist GW9662. When SH-SY5Y cells were induced to differentiate toward a more mature phenotype, they became resistant to B1-PhytoP activities. B1-PhytoP's also influenced immature cells of an oligodendroglial line, as they increased the metabolic activity of oligodendrocyte progenitors and strongly accelerated their differentiation to immature oligodendrocytes, through mechanisms at least partially dependent on PPAR-γ activity. However, B1-PhytoP's did not protect oligodendrocyte progenitors against oxidant injury. Taken together, these data suggest that B1-PhytoP's, through novel mechanisms involving PPAR-γ, can specifically affect immature brain cells, such as neuroblasts and oligodendrocyte progenitors, thereby conferring neuroprotection against oxidant injury and promoting myelination.


Assuntos
Ciclopentanos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Furanos/farmacologia , Células-Tronco Neurais/citologia , Fármacos Neuroprotetores/farmacologia , PPAR gama/metabolismo , Anilidas/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Sistema Nervoso Central/citologia , Ativação Enzimática , Humanos , Peróxido de Hidrogênio/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/citologia , Oligodendroglia/citologia , Estresse Oxidativo , PPAR gama/antagonistas & inibidores , Ácido alfa-Linolênico/metabolismo
15.
Glia ; 61(10): 1698-711, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918452

RESUMO

Increasing evidence indicates that "functional plasticity" is not solely a neuronal attribute but a hallmark of microglial cells, the main brain resident macrophage population. Far from being a univocal phenomenon, microglial activation can originate a plethora of functional phenotypes, encompassing the classic M1 proinflammatory and the alternative M2 anti-inflammatory phenotypes. This concept overturns the popular view of microglial activation as a synonym of neurotoxicity and neurogenesis failure in brain disorders. The characterization of the alternative programs is a matter of intense investigation, but still scarce information is available on the course of microglial activation, on the reversibility of the different commitments and on the capability of preserving molecular memory of previous priming stimuli. By using organotypic hippocampal slice cultures as a model, we developed paradigms of stimulation aimed at shedding light on some of these aspects. We show that persistent stimulation of TLR4 signaling promotes an anti-inflammatory response and microglial polarization toward M2-like phenotype. Moreover, acute and chronic preconditioning regimens permanently affect the capability to respond to a later challenge, suggesting the onset of mechanisms of molecular memory. Similar phenomena could occur in the intact brain and differently affect the vulnerability of mature and newborn neurons to noxious signals.


Assuntos
Polaridade Celular/fisiologia , Hipocampo/citologia , Microglia/fisiologia , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Arginase/genética , Arginase/metabolismo , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Técnicas de Cultura de Órgãos , Fagocitose/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos , Fatores de Tempo
16.
Aging Cell ; 12(4): 695-705, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23648059

RESUMO

The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1-Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxodGTP and 8-oxoGTP and excludes 8-oxoguanine from both DNA and RNA. Compared to wild-type animals, hMTH1-overexpressing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1-Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1-Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1-Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.


Assuntos
Comportamento Animal , Enzimas Reparadoras do DNA/metabolismo , Comportamento Exploratório , Regulação da Expressão Gênica no Desenvolvimento , Longevidade , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Senescência Celular , Enzimas Reparadoras do DNA/genética , Feminino , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oxirredução , Estresse Oxidativo , Monoéster Fosfórico Hidrolases/genética , Fatores de Tempo
17.
Biochim Biophys Acta ; 1832(5): 650-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23402925

RESUMO

The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids involved in several important brain functions. Although commonly used as nutritional supplements, excessive intake of BCAAs might favour the establishment of neurotoxic conditions as indicated by the severe neurological symptoms characterising inherited disorders of BCAA catabolism such as maple syrup urine disease (MSUD). Recent evidence indicates that BCAAs induce excitotoxicity through mechanisms that require the presence of astrocytes. In the present study, we evaluated the effects of BCAAs on microglia, the main immune cells of the brain. As an experimental model we used primary microglial cells harvested from mixed glial cultures that had been kept in normal or high BCAA medium (H-BCAA). We show that H-BCAA microglial cells exhibit a peculiar phenotype characterized by a partial skewing toward the M2 state, with enhanced IL-10 expression and phagocytic activity but also increased free radical generation and decreased neuroprotective functions. We suggest that such an intermediate M1/M2 phenotype might result in a less efficient microglial response, which would promote the establishment of a low grade chronic inflammation and increase the likelihood of neurodegeneration. Although based on in vitro evidence, our study adds on to an increasing literature indicating that the increasing use of dietary integrators might deserve consideration for the possible drawbacks. In addition to excitotoxicity, the altered immune profile of microglia might represent a further mechanism by which BCAAs might turn into toxicants and facilitate neurodegeneration.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Citocinas/metabolismo , Microglia/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Western Blotting , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Radicais Livres/metabolismo , Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microglia/citologia , Microglia/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia
18.
PLoS One ; 8(2): e55753, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409035

RESUMO

Maternal-fetal HIV-1 transmission can be prevented by administration of AZT, alone or in combination with other antiretroviral drugs to pregnant HIV-1-infected women and their newborns. In spite of the benefits deriving from this life-saving prophylactic therapy, there is still considerable uncertainty on the potential long-term adverse effects of antiretroviral drugs on exposed children. Clinical and experimental studies have consistently shown the occurrence of mitochondrial dysfunction and increased oxidative stress following prenatal treatment with antiretroviral drugs, and clinical evidence suggests that the developing brain is one of the targets of the toxic action of these compounds possibly resulting in behavioral problems. We intended to verify the effects on brain and behavior of mice exposed during gestation to AZT, the backbone of antiretroviral therapy during human pregnancy. We hypothesized that glutamate, a neurotransmitter involved in excitotoxicity and behavioral plasticity, could be one of the major actors in AZT-induced neurochemical and behavioral alterations. We also assessed the antioxidant and neuroprotective effect of L-acetylcarnitine, a compound that improves mitochondrial function and is successfully used to treat antiretroviral-induced polyneuropathy in HIV-1 patients. We found that transplacental exposure to AZT given per os to pregnant mice from day 10 of pregnancy to delivery impaired in the adult offspring spatial learning and memory, enhanced corticosterone release in response to acute stress, increased brain oxidative stress also at birth and markedly reduced expression of mGluR1 and mGluR5 subtypes and GluR1 subunit of AMPA receptors in the hippocampus. Notably, administration during the entire pregnancy of L-acetylcarnitine was effective in preventing/ameliorating the neurochemical, neuroendocrine and behavioral adverse effects induced by AZT in the offspring. The present preclinical findings provide a mechanistic hypothesis for the neurobehavioral effects of AZT and strongly suggest that preventive administration of L-acetylcarnitine might be effective in reducing the neurological side-effects of antiretroviral therapy in fetus/newborn.


Assuntos
Acetilcarnitina/farmacologia , Fármacos Anti-HIV/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Troca Materno-Fetal , Fármacos Neuroprotetores/farmacologia , Zidovudina/efeitos adversos , Animais , Fármacos Anti-HIV/administração & dosagem , Peso ao Nascer/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Estresse Fisiológico/efeitos dos fármacos , Zidovudina/administração & dosagem
19.
Stem Cells Dev ; 22(3): 345-58, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23098139

RESUMO

Metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs), produced in the brain by cells of non-neural and neural origin, including neural progenitors (NPs), are emerging as regulators of nervous system development and adult brain functions. In the present study, we explored whether MMP-2, MMP-9, and TIMP-2, abundantly produced in the brain, modulate NP developmental properties. We found that treatment of NPs, isolated from the murine fetal cerebral cortex or adult subventricular zone, with the clinically tested broad-spectrum MMP inhibitor Marimastat profoundly affected the NP differentiation fate. Marimastat treatment allowed for an enrichment of our cultures in neuronal cells, inducing NPs to generate higher percentage of neurons and a lower percentage of astrocytes, possibly affecting NP commitment. Consistently with its proneurogenic effect, Marimastat early downregulated the expression of Notch target genes, such as Hes1 and Hes5. MMP-2 and MMP-9 profiling on proliferating and differentiating NPs revealed that MMP-9 was not expressed under these conditions, whereas MMP-2 increased in the medium as pro-MMP-2 (72 kDa) during differentiation; its active form (62 kDa) was not detectable by gel zymography. MMP-2 silencing or administration of recombinant active MMP-2 demonstrated that MMP-2 does not affect NP neuronal differentiation, nor it is involved in the Marimastat proneurogenic effect. We also found that TIMP-2 is expressed in NPs and increases during late differentiation, mainly as a consequence of astrocyte generation. Endogenous TIMP-2 did not modulate NP neurogenic potential; however, the proneurogenic action of Marimastat was mediated by TIMP-2, as demonstrated by silencing experiments. In conclusion, our data exclude a major involvement of MMP-2 and MMP-9 in the regulation of basal NP differentiation, but highlight the ability of TIMP-2 to act as key effector of the proneurogenic response to an inducing stimulus such as Marimastat.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Células-Tronco Neurais/fisiologia , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica , Técnicas de Silenciamento de Genes , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , RNA Interferente Pequeno/genética , Inibidor Tecidual de Metaloproteinase-2/genética
20.
Neurobiol Aging ; 33(1): 205.e19-29, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20961666

RESUMO

Hypertension and sporadic Alzheimer's disease (AD) have been associated but clear pathophysiological links have not yet been demonstrated. Hypertension and AD share inflammation as a pathophysiological trait. Thus, we explored if modulating neuroinflammation could influence hypertension-induced ß-amyloid (Aß) deposition. Possible interactions among hypertension, inflammation and Aß-deposition were studied in hypertensive mice with transverse aortic coarctation (TAC). Given that brain Aß deposits are detectable as early as 4 weeks after TAC, brain pathology was analyzed in 3-week TAC mice, before Aß deposition, and at a later time (8-week TAC mice). Microglial activation and interleukin (IL)-1ß upregulation were already found in 3-week TAC mice. At a later time, along with evident Aß deposition, microglia was still activated. Finally, immune system stimulation (LPS) or inhibition (ibuprofen), strategies described to positively or negatively modulate neuroinflammation, differently affected Aß deposition. We demonstrate that hypertension per se triggers neuroinflammation before Aß deposition. The finding that only immune system activation, but not its inhibition, strongly reduced amyloid burden suggests that stimulating inflammation in the appropriate time window may represent a promising strategy to limit vascular-triggered AD-pathology.


Assuntos
Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Hipertensão/metabolismo , Inflamação Neurogênica/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Hipertensão/complicações , Hipertensão/fisiopatologia , Ibuprofeno/administração & dosagem , Sistema Imunitário/imunologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Inflamação Neurogênica/complicações , Inflamação Neurogênica/fisiopatologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...