Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255723

RESUMO

Deciphering the origins of life on a molecular level includes unravelling the numerous interactions that could occur between the most important biomolecules being the lipids, peptides and nucleotides. They were likely all present on the early Earth and all necessary for the emergence of cellular life. In this study, we intended to explore conditions that were at the same time conducive to chemical reactions critical for the origins of life (peptide-oligonucleotide couplings and templated ligation of oligonucleotides) and compatible with the presence of prebiotic lipid vesicles. For that, random peptides were generated from activated amino acids and analysed using NMR and MS, whereas short oligonucleotides were produced through solid-support synthesis, manually deprotected and purified using HPLC. After chemical activation in prebiotic conditions, the resulting mixtures were analysed using LC-MS. Vesicles could be produced through gentle hydration in similar conditions and observed using epifluorescence microscopy. Despite the absence of coupling or ligation, our results help to pave the way for future investigations on the origins of life that may gather all three types of biomolecules rather than studying them separately, as it is still too often the case.

2.
J Mol Evol ; 87(2-3): 83-92, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30788531

RESUMO

How ribosomal translation could have evolved remains an open question in most available scenarios for the early developments of life. Rather than considering RNA and peptides as two independent systems, this work is aimed at assessing the possibility of formation and stability of co-polymers or co-oligomers of α-amino acids and nucleotides from which translation might have evolved. Here we show that the linkages required to build such mixed structures have lifetimes of several weeks to months at neutral pH and 20 °C owing to the mutual protecting effect of both neighboring phosphoramidate and ester functional groups increasing their stability by factors of about 1 and 3 orders of magnitude, respectively. This protecting effect is reversible upon hydrolysis allowing the possibility of subsequent reactions. These copolymer models, for which an abiotic synthesis pathway is supported by experiments, form a basis from which both polymerization and translation could have logically evolved. Low temperatures were identified as a critical parameter for the kinetic stability of the aminoacylated nucleotide facilitating the synthesis of the model. This observation independently supports the views that any process involving RNA aminoacyl esters, outstandingly including the emergence of translation, was more probable at 0 °C or below and might be considered a kinetic marker constraining the environment in which translation has evolved.


Assuntos
Aminoácidos/química , Evolução Química , Ribonucleotídeos/química , Amidas/química , Evolução Biológica , Ésteres/química , Evolução Molecular , Concentração de Íons de Hidrogênio , Hidrólise , Nucleotídeos/química , Peptídeos/química , Ácidos Fosfóricos/química , Polimerização , Polímeros/química
3.
Chemistry ; 23(31): 7418-7421, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28378889

RESUMO

The formation of peptides upon 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)-promoted activation of N-carbamoylamino acids (CAA), was considered in the scope of our recent works on carbodiimide promoted C-terminus elongation of peptides in a prebiotic context. Thus EDC promoted activation of CAA derivatives of Tyr(Me) or Ala in dilute aqueous medium pH 5.5-6.5 in the presence of excess of AA, resulted in peptide formation by C-terminus activation/elongation. Kinetic results similar to those of EDC-mediated activation of N-acyl-AA lead us to postulate the formation of a 2-amino-5(4H)-oxazolone intermediate by cyclization of the activated CAA, in spite of the absence of epimerization occurred at CAA residues. Thus, in a prebiotic context, CAA may have played a similar role as N-acyl-AA in the initiation of C-terminus peptide elongation.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Biossíntese Peptídica/fisiologia , Peptídeos/metabolismo , Prebióticos , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...