Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802026

RESUMO

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma , DNA/genética , Pinças Ópticas
2.
Nat Commun ; 14(1): 5474, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673883

RESUMO

Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To increase the detection sensitivity, we develop an off-target assessment workflow that uses Duplex Sequencing. The strategy increases sensitivity by one order of magnitude, identifying previously unknown SpCas9's off-target mutations in the humanized PCSK9 mouse model. To reduce off-target risks, we perform a bioinformatic search and identify a high-fidelity Cas9 variant of the II-B subfamily from Parasutterella secunda (PsCas9). PsCas9 shows improved specificity as compared to SpCas9 across multiple tested sites, both in vitro and in vivo, including the PCSK9 site. In the future, while PsCas9 will offer an alternative to SpCas9 for research and clinical use, the Duplex Sequencing workflow will enable a more sensitive assessment of Cas9 editing outcomes.


Assuntos
Pró-Proteína Convertase 9 , Translocação Genética , Animais , Camundongos , Pró-Proteína Convertase 9/genética , Sistemas CRISPR-Cas/genética , Mutação , Endonucleases/genética , Streptococcus pyogenes/genética
3.
Nat Commun ; 14(1): 4761, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580318

RESUMO

Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (PolÏ´). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Proteínas Quinases/genética , Reparo do DNA/genética , DNA/genética
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638938

RESUMO

Metabolic adaptation to increased oxidative phosphorylation (OXPHOS) has been found in gastrointestinal stromal tumor (GIST) upon imatinib treatment. However, the underlying mechanism of imatinib-induced OXPHOS is unknown. Discovering molecules that mediate imatinib-induced OXPHOS may lead to the development of therapeutic strategies synergizing the efficacy of imatinib. In this study, we explored the role of microRNAs in regulating OXPHOS in GIST upon imatinib treatment. Using a microarray approach, we found that miR-483-3p was one of the most downregulated miRNAs in imatinib-treated tumors compared to untreated tumors. Using an extended series of GIST samples, we further validated the downregulation of miR-483-3p in imatinib-treated GIST samples by RT-qPCR. Using both gain- and loss-of-function experiments, we showed that miR-483-3p could regulate mitochondrial respiratory Complex II expression, suggesting its role in OXPHOS regulation. Functionally, miR-483-3p overexpression could rescue imatinib-induced cell death. These findings provide the molecular link for imatinib-induced OXPHOS expression and the biological role of miR-483-3p in regulating cell viability upon imatinib treatment.


Assuntos
Antineoplásicos/farmacologia , Complexo II de Transporte de Elétrons/metabolismo , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Mesilato de Imatinib/farmacologia , MicroRNAs/metabolismo , Mitocôndrias/enzimologia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação para Baixo/efeitos dos fármacos , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib/uso terapêutico , MicroRNAs/genética , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , RNA Mensageiro/genética , Transdução de Sinais/genética , Transfecção
5.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484963

RESUMO

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Assuntos
Edição de Genes/métodos , Hepatócitos/transplante , Mutação , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Ornitina Carbamoiltransferase/genética , Adulto , Idoso , Amônia/metabolismo , Animais , Células Cultivadas , Criança , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hepatócitos/química , Hepatócitos/citologia , Humanos , Íntrons , Masculino , Camundongos , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ácido Orótico/urina , Splicing de RNA
6.
Science ; 364(6437): 286-289, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31000663

RESUMO

CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Edição de Genes/métodos , Proteína Homóloga a MRE11/metabolismo , Análise de Sequência de DNA/métodos , Adenoviridae , Animais , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , DNA/química , DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Células K562 , Proteína Homóloga a MRE11/genética , RNA Guia de Cinetoplastídeos
7.
BMC Biol ; 17(1): 4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646909

RESUMO

BACKGROUND: Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. RESULTS: To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. CONCLUSIONS: Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.


Assuntos
Colesterol/sangue , Hipercolesterolemia/genética , Fígado/metabolismo , Pró-Proteína Convertase 9/genética , Animais , Modelos Animais de Doenças , Edição de Genes , Genoma , Humanos , Hipercolesterolemia/metabolismo , Camundongos , Camundongos Transgênicos
8.
Nature ; 561(7723): 416-419, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209390

RESUMO

CRISPR-Cas genome-editing nucleases hold substantial promise for developing human therapeutic applications1-6 but identifying unwanted off-target mutations is important for clinical translation7. A well-validated method that can reliably identify off-targets in vivo has not been described to date, which means it is currently unclear whether and how frequently these mutations occur. Here we describe 'verification of in vivo off-targets' (VIVO), a highly sensitive strategy that can robustly identify the genome-wide off-target effects of CRISPR-Cas nucleases in vivo. We use VIVO and a guide RNA deliberately designed to be promiscuous to show that CRISPR-Cas nucleases can induce substantial off-target mutations in mouse livers in vivo. More importantly, we also use VIVO to show that appropriately designed guide RNAs can direct efficient in vivo editing in mouse livers with no detectable off-target mutations. VIVO provides a general strategy for defining and quantifying the off-target effects of gene-editing nucleases in whole organisms, thereby providing a blueprint to foster the development of therapeutic strategies that use in vivo gene editing.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Edição de Genes/normas , Genoma/genética , Mutação , Especificidade por Substrato/genética , Animais , Proteínas Associadas a CRISPR/genética , Feminino , Humanos , Mutação INDEL , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/genética , Transgenes/genética
9.
Exp Cell Res ; 371(1): 287-296, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30149002

RESUMO

The use of imatinib mesylate has greatly improved the clinical outcome for gastrointestinal stromal tumor (GIST) patients. However, imatinib resistance is still a major clinical challenge, and the molecular mechanisms are not fully understood. We have previously shown that miR-125a-5p and its mRNA target PTPN18 modulate imatinib response in GIST cells. Herein, we evaluated phosphorylated FAK (pFAK) as a candidate downstream target of PTPN18 and the possible association of this regulation with imatinib resistance in GIST. FAK and pFAK expressions were evaluated in GIST882 cells transfected with short hairpin RNA or short interfering RNA targeting PTPN18 or miR-125a-5p mimic, imatinib-resistant GIST882R subclones and clinical samples using Western blot analyses. FAK phosphorylation was blocked using the FAK inhibitor 14 (FAKi) and the effects on cell viability and apoptosis were evaluated using WST-1 assay and cleaved PARP expression. Clinical associations of FAK and pFAK expression with imatinib resistance, KIT mutation and patient outcome were assessed by Fisher's exact test or log-rank test. Over-expression of miR-125a-5p and silencing of PTPN18 increased pFAK, but not FAK, expression in GIST cells. Higher pFAK expression was observed in the GIST882R subclones with acquired imatinib resistance compared to their imatinib-sensitive parental cells. Treatment with FAKi in imatinib-resistant GIST882R cells reduced cell viability and increased apoptosis upon imatinib treatment. Additionally, FAKi could rescue the imatinib resistance effect mediated by miR-125a-5p over-expression. In clinical samples, high FAK and pFAK expressions were associated with KIT mutation status, and high FAK expression was also associated with metastasis in GIST. Higher pFAK was found in cases with shorter overall survival. Our findings highlight an important role for miR-125a-5p regulation and its downstream target pFAK for imatinib resistance in GIST. pFAK and FAK may have prognostic values in GIST.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Quinase 1 de Adesão Focal/genética , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Regulação Neoplásica da Expressão Gênica , Mesilato de Imatinib/farmacologia , MicroRNAs/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/mortalidade , Tumores do Estroma Gastrointestinal/diagnóstico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/mortalidade , Humanos , MicroRNAs/metabolismo , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Fosforilação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Análise de Sobrevida
10.
Adv Exp Med Biol ; 889: 51-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658996

RESUMO

Gastrointestinal stromal tumor (GIST) is the most commonly diagnosed mesenchymal tumor in the gastrointestinal tract. This tumor type is driven by gain-of-function mutations in receptor tyrosine kinases (such as KIT, PDGFRA, and BRAF) or loss-of-function mutations in succinate dehydrogenase complex subunit genes (SDHx). Molecular studies on GIST have improved our understanding of the biology of the disease and have led to the use of targeted therapy approach, such as imatinib for KIT/PDGFRA-mutated GIST. Recently, microRNAs have emerged as important regulators of KIT expression, cancer cell behavior, and imatinib response in GIST. This chapter aims to provide an overview on current understanding of the biological roles of microRNAs in GIST and possible implications in prognosis and therapeutic response.


Assuntos
Tumores do Estroma Gastrointestinal/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Antineoplásicos/uso terapêutico , Fenômenos Fisiológicos Celulares/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Humanos , Mesilato de Imatinib/uso terapêutico , Modelos Genéticos
11.
Exp Cell Res ; 336(1): 158-70, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25983130

RESUMO

Strategies for correct diagnosis, treatment evaluation and recurrence prediction are important for the prognosis and mortality rates among cancer patients. In spite of major improvements in clinical management, gastrointestinal stromal tumors (GISTs) can still be deadly due to metastasis and recurrences, which confirms the unmet need of reliable follow-up modalities. Tumor-specific secreted, shed or leaked proteins (collectively known as secretome) are considered promising sources for biomarkers, and suitable for detection in biofluids. Herein, we stimulated cell secretion in the imatinib-sensitive GIST882 cell line and profiled the secretome, collected as conditioned media, by using a shotgun proteomics approach. We identified 764 proteins from all conditions combined, 51.3% being predicted as classically/non-classically secreted. The protein subsets found were dependent on the stimulatory condition. The significant increase in protein release by the classical pathway was strongly associated with markers already found in other cancer types. Furthermore, most of the released proteins were non-classically released and overlapped to a high degree with proteins of exosomal origin. Imatinib pre-treatment radically changed these secretory patterns, which can have clinical implications when investigating biomarkers in imatinib-treated versus non-treated GIST patients. Our results show, for the first time, that GISTs contain a secretome signature. In the search for suitable biomarkers in the more complex GIST patient samples, this study aids in the understanding of basic GIST secretome characteristics.


Assuntos
Tumores do Estroma Gastrointestinal/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Western Blotting , Células Cultivadas , Cromatografia Líquida/métodos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mesilato de Imatinib , Células Secretoras de Insulina/citologia , Camundongos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
Exp Cell Res ; 326(2): 315-25, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24825187

RESUMO

DOG1, a Ca(2+)-activated Cl(-) channel (CaCC), was identified in 2004 to be robustly expressed in gastrointestinal stromal tumors (GIST). It was rapidly included as a tumor marker in routine diagnostics, but the functional role remained unknown. CaCCs are important regulators of normal physiological functions, but also implicated in tumorigenesis, cancer progression, metastasis, cell migration, apoptosis, proliferation and viability in several malignancies. We therefore investigated whether DOG1 plays a role in the three latter in GIST by utilizing in vitro cell model systems. Confocal microscopy identified different subcellular localizations of DOG1 in imatinib-sensitive and imatinib-resistant cells. Electrophysiological studies confirmed that DOG1-specific pharmacological agents possess potent activating and inhibiting properties. Proliferation assays showed small effects up to 72 h, and flow cytometric analysis of adherent cells with 7-AAD/Annexin V detected no pharmacological effects on viable GIST cells. However, inhibition of DOG1 conveyed pro-apoptotic effects among early apoptotic imatinib-resistant cells. In conclusion, DOG1 generates Cl(-) currents in GIST that can be regulated pharmacologically, with small effects on cell viability and proliferation in vitro. Inhibition of DOG1 might act pro-apoptotic on some early apoptotic GIST cell populations. Further studies are warranted to fully illuminate the function of DOG1 and its potential as therapeutic target.


Assuntos
Canais de Cloreto/metabolismo , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Anoctamina-1 , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Agonistas dos Canais de Cloreto , Canais de Cloreto/antagonistas & inibidores , Fenômenos Eletrofisiológicos , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Humanos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/farmacologia , Tiazóis/farmacologia
13.
Anticancer Drugs ; 25(4): 415-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24361761

RESUMO

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm in the gastrointestinal tract. In most GISTs, the underlying mechanism is a gain-of-function mutation in the KIT or the PDGFRA gene. Imatinib is a tyrosine kinase inhibitor that specifically blocks the intracellular ATP-binding sites of these receptors. A correlation exists between plasma levels of imatinib and progression-free survival, but it is not known whether the plasma concentration correlates with the intracellular drug concentration. We determined intracellular imatinib levels in two GIST cell lines: the imatinib-sensitive GIST882 and the imatinib-resistant GIST48. After exposing the GIST cells to imatinib, the intracellular concentrations were evaluated using LC-MS (TOF). The concentration of imatinib in clinical samples from three patients was also determined to assess the validity and reliability of the method in the clinical setting. Determination of imatinib uptake fits within detection levels and values are highly reproducible. The GIST48 cells showed significantly lower imatinib uptake compared with GIST882 in therapeutic doses, indicating a possible difference in uptake mechanisms. Furthermore, imatinib accumulated in the tumor tissues and showed intratumoral regional differences. These data show, for the first time, a feasible and reproducible technique to measure intracellular imatinib levels in experimental and clinical settings. The difference in the intracellular imatinib concentration between the cell lines and clinical samples indicates that drug transporters may contribute toward resistance mechanisms in GIST cells. This highlights the importance of further clinical studies to quantify drug transporter expression and measure intracellular imatinib levels in GIST patients.


Assuntos
Antineoplásicos/metabolismo , Benzamidas/metabolismo , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Piperazinas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mesilato de Imatinib , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Reprodutibilidade dos Testes
14.
Endocr Relat Cancer ; 20(4): 551-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23671264

RESUMO

Deregulation of microRNA (miRNA) expression in adrenocortical carcinomas (ACCs) has been documented to have diagnostic, prognostic, as well as functional implications. Here, we evaluated the mRNA expression of DROSHA, DGCR8, DICER (DICER1), TARBP2, and PRKRA, the core components in the miRNA biogenesis pathway, in a cohort of 73 adrenocortical tumors (including 43 adenomas and 30 carcinomas) and nine normal adrenal cortices using a RT-qPCR approach. Our results show a significant over-expression of TARBP2, DICER, and DROSHA in the carcinomas compared with adenomas or adrenal cortices (P<0.001 for all comparisons). Using western blot and immunohistochemistry analyses, we confirmed the higher expression of TARBP2, DICER, and DROSHA at the protein level in carcinoma cases. Furthermore, we demonstrate that mRNA expression of TARBP2, but not DICER or DROSHA, is a strong molecular predictor to discriminate between adenomas and carcinomas. Functionally, we showed that inhibition of TARBP2 expression in human NCI-H295R ACC cells resulted in a decreased cell proliferation and induction of apoptosis. TARBP2 over-expression was not related to gene mutations; however, copy number gain of the TARBP2 gene was observed in 57% of the carcinomas analyzed. In addition, we identified that miR-195 and miR-497 could directly regulate TARBP2 and DICER expression in ACC cells. This is the first study to demonstrate the deregulation of miRNA-processing factors in adrenocortical tumors and to show the clinical and biological impact of TARBP2 over-expression in this tumor type.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/genética , Carcinoma Adrenocortical/genética , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Ribonuclease III/genética , Adulto Jovem
15.
Exp Cell Res ; 319(8): 1229-38, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23499741

RESUMO

Gastrointestinal stromal tumors (GISTs) are thought to originate from the electrically active pacemaker cells of the gastrointestinal tract. Despite the presence of synaptic-like vesicles and proteins involved in cell secretion it remains unclear whether GIST cells possess regulated release mechanisms. The GIST tumor cell line GIST882 was used as a model cell system, and stimulus-release coupling was investigated by confocal microscopy of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i), flow cytometry, and luminometric measurements of extracellular ATP. We demonstrate that GIST cells have an intact intracellular Ca(2+)-signaling pathway that regulates ATP release. Cell viability and cell membrane integrity was preserved, excluding ATP leakage due to cell death and suggesting active ATP release. The stimulus-secretion signal transduction is at least partly dependent on Ca(2+) influx since exclusion of extracellular Ca(2+) diminishes the ATP release. We conclude that measurements of ATP release in GISTs may be a useful tool for dissecting the signal transduction pathway, mapping exocytotic components, and possibly for the development and evaluation of drugs. Additionally, release of ATP from GISTs may have importance for tumor tissue homeostasis and immune surveillance escape.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/farmacologia , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Animais , Cátions/farmacologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Análise Mutacional de DNA , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Células HEK293 , Humanos , Insulina/metabolismo , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas c-kit/genética
16.
Mol Biol Rep ; 39(4): 5009-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22160516

RESUMO

Sarcoidosis (SA) is an immune-mediated multisystemic disorder of unknown etiology characterized by the accumulation of lymphocytes, mononuclear phagocytes and epithelioid cell granulomas involved in different organs and tissues. The belief that genetics contribute to SA etiology is supported by twin studies, disease clustering in families and racial differences in incidence rates. Involvements of SLC11A1 in macrophage function and activation, makes it an attractive candidate gene for immune-mediated and infectious diseases. We investigated the association between SA and four polymorphisms of the SLC11A1 gene, including a single nucleotide change in intron 4 (INT4); a nonconservative single-base substitution at codon 543 (D543N); a TGTG deletion in the 3' untranslated region; and the functional (GT)(n) repeat polymorphism in the 5' region, in 95 Turkish SA patients and 150 healthy controls, by using amplification refractory mutation system-polymerase chain reaction and sequencing. We found significant association between SA and INT4 G/C allele frequency (P = 0.0000; odds ratio 2.75; 95% confidence interval 1.68-4.52) and 5'(GT)(n) allele 2/3 frequency (P = 0.0000; odds ratio 2.69; 95% confidence interval 1.61-4.47) suggesting that SLC11A1 might be a plausible candidate gene for SA.


Assuntos
Proteínas de Transporte de Cátions/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Polimorfismo Genético , Sarcoidose/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Frequência do Gene/genética , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Teste Tuberculínico , Turquia , Adulto Jovem
17.
Endocr Relat Cancer ; 18(6): 643-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21859927

RESUMO

Adrenocortical carcinoma (ACC) is an aggressive tumor showing frequent metastatic spread and poor survival. Although recent genome-wide studies of ACC have contributed to our understanding of the disease, major challenges remain for both diagnostic and prognostic assessments. The aim of this study was to identify specific microRNAs (miRNAs) associated with malignancy and survival of ACC patients. miRNA expression profiles were determined in a series of ACC, adenoma, and normal cortices using microarray. A subset of miRNAs showed distinct expression patterns in the ACC compared with adrenal cortices and adenomas. Among others, miR-483-3p, miR-483-5p, miR-210, and miR-21 were found overexpressed, while miR-195, miR-497, and miR-1974 were underexpressed in ACC. Inhibition of miR-483-3p or miR-483-5p and overexpression of miR-195 or miR-497 reduced cell proliferation in human NCI-H295R ACC cells. In addition, downregulation of miR-483-3p, but not miR-483-5p, and increased expression of miR-195 or miR-497 led to significant induction of cell death. Protein expression of p53 upregulated modulator of apoptosis (PUMA), a potential target of miR-483-3p, was significantly decreased in ACC, and inversely correlated with miR-483-3p expression. In addition, high expression of miR-503, miR-1202, and miR-1275 were found significantly associated with shorter overall survival among patients with ACC (P values: 0.006, 0.005, and 0.042 respectively). In summary, we identified additional miRNAs associated with ACC, elucidated the functional role of four miRNAs in the pathogenesis of ACC cells, demonstrated the potential involvement of the pro-apoptotic factor PUMA (a miR-483-3p target) in adrenocortical tumors, and found novel miRNAs associated with survival in ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , MicroRNAs/biossíntese , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Neoplásico/química , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Análise de Sobrevida
18.
Int J Oncol ; 39(2): 311-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21573504

RESUMO

Colorectal cancer (CRC) is one of the most common and deadly forms of cancer. Despite improved treatment modalities, post-operative recurrence and metastasis remain the major problems for extending patient survival after surgery. This highlights the need to search for biomarkers for prognostication and treatment stratification of colorectal cancer patients. In this study, we applied the SYBR-green quantitative PCR-based array approach to screen for differentially expressed miRNAs between patients with short (<50 months, range 10-33 months) and long survival (≥ 50 months, range 50-152 months). The selected candidate prognostic miRNAs were validated in a cohort of 50 CRC patients by TaqMan quantitative PCR. We found that high expression of miR-185 and low expression of miR-133b were correlated with poor survival (p=0.001 and 0.028, respectively) and metastasis (p=0.007 and 0.036, respectively) in colorectal cancer. Our findings suggest the potential prognostic values of these miRNAs for predicting clinical outcome after surgery.


Assuntos
Neoplasias Colorretais/fisiopatologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Neoplasias Colorretais/mortalidade , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico
19.
BMC Dev Biol ; 9: 26, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19356224

RESUMO

BACKGROUND: During skeletogenesis, protein levels of beta-catenin in the canonical Wnt signaling pathway determine lineage commitment of skeletal precursor cells to osteoblasts and chondrocytes. Adenomatous polyposis coli (Apc) is a key controller of beta-catenin turnover by down-regulating intracellular levels of beta-catenin. RESULTS: To investigate whether Apc is involved in lineage commitment of skeletal precursor cells, we generated conditional knockout mice lacking functional Apc in Col2a1-expressing cells. In contrast to other models in which an oncogenic variant of beta-catenin was used, our approach resulted in the accumulation of wild type beta-catenin protein due to functional loss of Apc. Conditional homozygous Apc mutant mice died perinatally showing greatly impaired skeletogenesis. All endochondral bones were misshaped and lacked structural integrity. Lack of functional Apc resulted in a pleiotropic skeletal cell phenotype. The majority of the precursor cells lacking Apc failed to differentiate into chondrocytes or osteoblasts. However, skeletal precursor cells in the proximal ribs were able to escape the noxious effect of functional loss of Apc resulting in formation of highly active osteoblasts. Inactivation of Apc in chondrocytes was associated with dedifferentiation of these cells. CONCLUSION: Our data indicate that a tight Apc-mediated control of beta-catenin levels is essential for differentiation of skeletal precursors as well as for the maintenance of a chondrocytic phenotype in a spatio-temporal regulated manner.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Osso e Ossos/metabolismo , Embrião de Mamíferos/metabolismo , beta Catenina/genética , Animais , Osso e Ossos/citologia , Osso e Ossos/embriologia , Diferenciação Celular/genética , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo II/genética , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Fenótipo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...