Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 755(Pt 2): 142563, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33059133

RESUMO

This study addressed the impact of air flow rate on the performance, membrane fouling behaviour and microbial community of a sequencing batch conventional membrane bioreactor (SB-MBR) and a sequencing batch hybrid membrane bioreactor (SB-HMBR) with carrier media for biofilm growth. Two different scenarios were evaluated: high (6.4 L min-1) and low (1.6 L min-1) air flow rates, associated with high (4.5 mg L-1) and low (1.5 mg L-1) dissolved oxygen (DO) concentrations and specific aeration demand per membrane area (SADm) of 0.426 and 0.106 m3 m-2 h-1, respectively. Both reactors were subjected to alternating non-aerated and aerated conditions for organic matter (as chemical oxygen demand - COD), nitrogen and phosphate removal from a municipal wastewater. From the bacterial community analysis, the key players in nutrient removal processes were assessed. The results showed that COD removal efficiencies were above 95% in both MBRs, regardless of the aeration intensity, while complete ammonium removal was observed at the higher DO. However, nitrifying activity was adversely affected under low DO levels. High nitrification levels were re-established faster in the hybrid MBR, thanks to the presence of biofilm, where nitrifying activity was favoured and the bacterial community profile did not exhibit substantial changes upon DO reduction. A higher denitrification potential was found for the carrier-based MBR, resulting in lower effluent nitrate concentrations. Regarding phosphorus removal, a slight improvement was observed in the SB-HMBR at reduced DO, while in the SB-MBR it remained practically constant. Moreover, the specific phosphate uptake rate exhibited a significant increase, especially in the hybrid MBR, reaching 44.6 mgP gVSS-1 h-1. At lower aeration rate, however, worse filterability and higher membrane fouling rates were observed, especially in the conventional MBR. Overall, the results demonstrated that the hybrid MBR better withstood the reduced air flow rate and DO as compared to the conventional counterpart.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Nitrogênio , Águas Residuárias
2.
Environ Technol ; 41(15): 1896-1911, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30465694

RESUMO

The effects of domestic wastewater and a coastal warm climate on granular sludge and biological nutrient removal were evaluated using a pilot-scale sequencing batch reactor (SBR). The reactor operation employed two different operational strategies (OS) based on up-flow feeding regimes, defined as fast (OS1, flow rate = 18.0 L min-1 and flow velocity = 22.0 m h-1) and slow (OS2, flow rate = 3.5 L min-1 and flow velocity = 4.3 m h-1). Under slow feeding, larger (OS1: 290 µm; OS2: 450 µm) and faster settling granules were obtained (OS1: 109; OS2: 74 mL g-1 TSS). The slow feeding regime was also advantageous for the hydrolysis of particulate organic matter (OS1: 1.3; OS2: 3.1 g CODtot g-1 VSS d-1) and for phosphorus removal (OS1: <33%; OS2: >97.5%). Neither strategy resulted in substantial biomass accumulation in the reactor (OS1: 0.7; OS2: 1.5 g VSS L-1), and high concentrations of nitrite were observed in the effluent (9-27 mg [Formula: see text] L-1). Ordinary heterotrophic organisms dominated the granular sludge developed under both feeding regimes (OS1: 30% of Thauera; OS2: 56% of Comamonas), while polyphosphate-accumulating organisms (PAOs) were only detected during OS2 (2.3-3.4% of total bacteria). A successful granular sludge process should be able to cope with high fluctuations in wastewater loads caused by rain events (82-182 mm month-1 in Florianopolis, Brazil). In order to achieve higher water quality, strategies identified for an efficient granular sludge SBR operation included (i) management of an anaerobic phase for PAO selection, and (ii) aeration control for successful nitrification/denitrification.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Brasil , Nutrientes , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...