Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194982, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659722

RESUMO

Introns can enhance gene expression in eukaryotic cells in a process called intron-mediated enhancement (IME). The levels of enhancement are affected not only by the intron sequence but also by coding sequences (CDSs). However, the parts of CDSs responsible for mediating IME have not yet been identified. In this study, we identified an IME-mediating sequence by analyzing three pairs of IME-sensitive and -insensitive CDSs in Saccharomyces cerevisiae. Expression of the CDSs yCLuc, yRoGLU1, and KmBGA1 was enhanced by the presence of an intron (i.e., they were IME sensitive), but the expression of each corresponding codon-changed CDS, which encoded the identical amino acid sequence, was not enhanced (i.e., they were IME insensitive). Interestingly, the IME-insensitive CDSs showed higher expression levels that were like intron-enhanced expression of IME-sensitive CDSs, suggesting that expression of IME-sensitive CDSs was repressed. A four-nucleotide sequence (TCTT) located in the promoter-proximal position of either the untranslated or coding region was found to be responsible for repression in IME-sensitive CDSs, and repression caused by the TCTT sequence was relieved by the presence of an intron. Further, it was found that the expression of intron-containing yeast-native genes, UBC4 and MPT5, was repressed by TCTT in the CDS but relieved by the introns. These results indicate that TCTT sequences in promoter-proximal positions repress gene expression and that introns play a role in relieving gene repression caused by sequences such as TCTT.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Íntrons/genética , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biosci Bioeng ; 133(6): 587-595, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35379547

RESUMO

Escherichia coli, Saccharomyces cerevisiae, and mammalian culture cells are standard host organisms for genetic engineering and research, thus various plasmid vectors have been developed. However, the vectors are designed only for a single host owing to their host-specific genetic elements such as promoters and selection markers. In this study, we developed a yeast expression plasmid that enables the expression of the same gene in E. coli and mammalian cells via the transfer of PCR products amplified from the plasmid as a template. The yeast plasmid YHp26352 was constructed to contain the following regions sequentially: yeast TDH3 promoter (TDH3p), red fluorescent protein (eEmRFP), SV40 terminator (SVpA), E. coli origin (ori), ampicillin resistant gene (AmpR), mammalian cytomegalovirus promoter (CMVp), E. coli srlA promoter (srlAp), and yeast selection marker URA3, which expressed eEmRFP in yeast. To express eEmRFP in mammalian cells, an end-promoter DNA fragment encompassing the eEmRFP-SVpA-ori-AmpR-CMVp region was amplified by PCR and directly used for transfection to mammalian culture cells, resulting in gene expression in mammalian cells through non-homologous end joining. Homologous recombination-mediated circularization was carried out for E. coli cloning and expression by attaching a short overlapping sequence to the 5'-end of a PCR primer, which was used to amplify the eEmRFP-SVpA-ori-AmpR-CMVp-srlAp fragment, after which E. coli transformation was performed. Proof-of-concept experiments were performed by expressing GFP-fused human synaptobrevin VAMP1, and wild-type and codon-changed CLuc luciferase genes in yeast, E. coli, and HEK293 cells. This is the first all-in-one plasmid applicable for expression in three host organisms.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Clonagem Molecular , DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/genética , Células HEK293 , Humanos , Mães , Plasmídeos/genética , Saccharomyces cerevisiae/genética
3.
Biochim Biophys Acta Gene Regul Mech ; 1865(1): 194784, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990853

RESUMO

Gene expression in eukaryotes is enhanced by the presence of introns in a process known as intron-mediated enhancement (IME), but its mechanism remains unclear. In Saccharomyces cerevisiae, sequences at the 5'-splice sites (SS) and branch point sites (BPS) are highly conserved compared with other higher eukaryotes. Here, the minimum intron sequence essential for IME was investigated using various short introns and a yeast codon-optimized luciferase gene as an IME model. Mutations at the 5'-SS conserved sequence and branch point in the QCR10 intron caused splicing deficiency with either a complete loss or a marked decrease in IME. By contrast, however, the 3'-AG to tG mutant was spliced and retained IME function. Moreover, heterologous introns, which did not show IME in S. cerevisiae, gained splicing competency and IME ability by substitutions to the S. cerevisiae-type 5'-SS and BPS sequences. Intriguingly, several deletion mutants between the 5'-SS and BPS in introns exhibited high levels of IME despite a loss in splicing competency. In most cases, further deletions or substitutions did not recover splicing competency and were found to decrease IME. However, a 16-nt variant consisting of the conserved 5'-SS and BPS sequences and 3'-CAG showed an IME level comparable with that of the wild-type intron. These results indicate that IME can be independent of splicing in S. cerevisiae while intron sequences at the 5'-SS and BPS play an essential role in IME.


Assuntos
Splicing de RNA , Saccharomyces cerevisiae , Expressão Gênica , Íntrons/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Saccharomyces cerevisiae/genética
4.
Curr Res Microb Sci ; 2: 100053, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841344

RESUMO

Eukaryotic autonomously replicating sequences (ARSs) are composed of three domains, A, B, and C. Domain A is comprised of an ARS consensus sequence (ACS), while the B domain has the DNA unwinding element and the C domain is important for DNA-protein interactions. In Saccharomyces cerevisiae and Kluyveromyces lactis ARS101, the ACS is commonly composed of 11 bp, 5'-(A/T)AAA(C/T)ATAAA(A/T)-3'. This core sequence is essential for S. cerevisiae and K. lactis ARS activity. In this study, we identified ARS-containing sequences from genomic libraries of the yeast Kluyveromyces marxianus DMKU3-1042 and validated their replication activities. The identified K. marxianus DMKU3-1042 ARSs (KmARSs) have very effective replication ability but their sequences are divergent and share no common consensus. We have carried out point mutations, deletions, and base pairs substitutions within the sequences of some of the KmARSs to identify the sequence(s) that influence the replication activity. Consensus sequences same as the 11 bp ACS of S. cerevisiae and K. lactis were not found in all minimum functional KmARSs reported here except KmARS7. Moreover, partial sequences from different KmARSs are interchangeable among each other to retain the ARS activity. We have also specifically identified the essential nucleotides, which are indispensable for replication, within some of the KmARSs. Our deletions analysis revealed that only 21 bp in KmARS18 could retain the ARS activity. The identified KmARSs in this study are unique compared to other yeasts' ARSs, do not share common ACS, and are interchangeable.

5.
Biomed Res Int ; 2020: 7245782, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274221

RESUMO

Candida albicans undergoes a yeast-to-hyphal transition that has been recognized as a virulence property as well as a turning point leading to biofilm formation associated with candidiasis. It is known that yeast-to-hyphal transition is induced under complex environmental conditions including temperature (above 35°C), pH (greater than 6.5), CO2, N-acetylglucosamine (GlcNAc), amino acids, RPMI-1640 synthetic culture medium, and blood serum. To identify the hyphal induction factor in the RPMI-1640 medium, we examined each component of RPMI-1640 and established a simple hyphal induction condition, that is, incubation in L-proline solution at 37°C. Incubation in GlcNAc solution alone, which is not contained in RPMI-1640, without any other materials was also identified as another simple hyphal induction condition. To inhibit hyphal formation, proline and GlcNAc analogs were examined. Among the proline analogs used, L-azetidine-2-carboxylic acid (AZC) inhibited hyphal induction under both induction conditions, but L-4-thiazolidinecarboxylic acid (T4C) specifically inhibited proline-induced hyphal formation only, while α-N-methyl-L-proline (mPro) selectively inhibited GlcNAc-induced hyphal formation. Hyphal formation in fetal bovine serum was also inhibited by AZC or T4C together with mPro without affecting the proliferation of yeast form. These results indicate that these proline analogs are ideal inhibitors of yeast-to-hyphal transition in C. albicans.


Assuntos
Acetilglucosamina/farmacologia , Candida albicans/fisiologia , Hifas/crescimento & desenvolvimento , Prolina/análogos & derivados , Prolina/farmacologia , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Hifas/citologia , Hifas/efeitos dos fármacos , Soro
6.
FEMS Yeast Res ; 20(7)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33130889

RESUMO

Kluyveromyces marxianus is a thermotolerant, ethanol-producing yeast that requires oxygen for efficient ethanol fermentation. Under anaerobic conditions, glucose consumption and ethanol production are retarded, suggesting that oxygen affects the metabolic state of K. marxianus. Mitochondria require oxygen to function, and their forms and number vary according to environmental conditions. In this study, the effect of anoxia on mitochondrial behavior in K. marxianus was examined. Under aerobic growth conditions, mitochondria-targeted GFP exhibited a tubular and dotted localization, representing a typical mitochondrial morphology, but under anaerobic conditions, GFP localized in vacuoles, suggesting that mitophagy occurs under anaerobic conditions. To confirm mitophagy induction, the ATG32, ATG8, ATG11 and ATG19 genes were disrupted. Vacuolar localization of mitochondria-targeted GFP under anaerobic conditions was interrupted in the Δatg32 and Δatg8 strains but not the Δatg11 and Δatg19 strains. Electron microscopy revealed mitochondria-like membrane components in the vacuoles of wild-type cells grown under anaerobic conditions. Quantitative analyses using mitochondria-targeted Pho8 demonstrated that mitophagy was induced in K. marxianus by anoxia but not nitrogen starvation. To the best of our knowledge, this is the first demonstration of anoxia-induced mitophagy in yeasts.


Assuntos
Kluyveromyces/metabolismo , Mitofagia , Oxigênio/metabolismo , Anaerobiose , Fermentação , Mitocôndrias/metabolismo
7.
Cancer Sci ; 111(12): 4371-4380, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32969571

RESUMO

Protein phosphatase 6 (PP6) is an essential serine/threonine protein phosphatase that acts as an important tumor suppressor. However, increased protein levels of PP6 have been observed in some cancer types, and they correlate with poor prognosis in glioblastoma. This raises a question about how PP6 protein levels are regulated in normal and transformed cells. In this study, we show that PP6 protein levels increase in response to pharmacologic and genetic inhibition of autophagy. PP6 associates with autophagic adaptor protein p62/SQSTM1 and is degraded in a p62-dependent manner. Accordingly, protein levels of PP6 and p62 fluctuate in concert under different physiological and pathophysiological conditions. Our data reveal that PP6 is regulated by p62-dependent autophagy and suggest that accumulation of PP6 protein in tumor tissues is caused at least partially by deficiency in autophagy.


Assuntos
Autofagia/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Inibidores de Cisteína Proteinase/farmacologia , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Leupeptinas/farmacologia , Macrolídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo
8.
Yeast ; 36(5): 249-257, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30537227

RESUMO

In the yeast Saccharomyces cerevisiae, the yeast episomal plasmid (YEp), containing a partial sequence from a natural 2-µm plasmid, has been frequently used to induce high levels of gene expression. In this study, we used Japanese sake yeast natural cir0 strain as a host for constructing an entire 2-µm plasmid with an expression construct using the three-fragment gap-repair method without Escherichia coli manipulation. The 2-µm plasmid contains two long inverted repeats, which is problematic for the amplification by polymerase chain reaction. Therefore, we amplified it by dividing into two fragments, each containing a single repeat together with an overlapping sequence for homologous recombination. TDH3 promoter-driven yEmRFP (TDH3p-yEmRFP) and the URA3 were used as a reporter gene and a selection marker, respectively, and inserted at the 3' end of the RAF1 gene on the 2-µm plasmid. The three fragments were combined and used for the transformation of sake yeast cir0 ura3- strain. The resulting transformant colonies showed a red or purple coloration, which was significantly stronger than that of the cells transformed with YEp-TDH3p-yEmRFP. The 2-µm transformants were cultured in YPD medium and observed by fluorescence microscopy. Almost all cells showed strong fluorescence, suggesting that the plasmid was preserved during nonselective culture conditions. The constructed plasmid maintained a high copy state similar to that of the natural 2-µm plasmid, and the red fluorescent protein expression was 54 fold compared with the chromosomal integrant. This vector is named YHp, the Yeast Hyper expression plasmid.


Assuntos
Genes Fúngicos , Técnicas de Amplificação de Ácido Nucleico , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Clonagem Molecular , DNA Fúngico/genética , Alimentos Fermentados/microbiologia , Expressão Gênica , Proteínas Luminescentes/genética , Recombinação Genética , Proteína Vermelha Fluorescente
9.
Mol Biotechnol ; 60(12): 912-923, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30269209

RESUMO

Escherichia coli has been used for recombinant protein production for many years. However, no native E. coli promoters have been found for constitutive expression in LB medium. To obtain high-expression E. coli promoters active in LB medium, we inserted various promoter regions upstream of eEmRFP that encodes a red fluorescent protein. Among the selected promoters, only colonies of srlA promoter transformants turned red on LB plate. srlA is a gene that regulates sorbitol utilization. The addition of sorbitol enhanced eEmRFP expression but glucose and other sugars repressed, indicating that srlAp is a sorbitol-enhanced glucose-repressed promoter. To analyze the srlAp sequence, a novel site-directed mutagenesis method was developed. Since we demonstrated that homologous recombination in E. coli could occur between 12-bp sequences, 12-bp overlapping sequences were attached to the set of primers that were designed to produce a full-length plasmid, denoted "one-round PCR product." Using this method, we identified that the srlA promoter region was 100 bp. Further, the sequence adjacent to the start codon was found to be essential for high expression, suggesting that the traditionally used restriction enzyme sites for cloning in the promoter region have hindered expression. The srlA-driven expression system and DNA manipulation with one-round PCR products are useful tools in E. coli genetic engineering.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Glucose/metabolismo , Proteínas Recombinantes/metabolismo , Sorbitol/metabolismo , Clonagem Molecular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Recombinação Homóloga , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética
10.
J Biosci Bioeng ; 125(6): 676-681, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29370981

RESUMO

The production of extracellular proteins by the thermotolerant yeast Kluyveromyces marxianus, which utilizes various sugars, was investigated using media containing sugars such as glucose, galactose, and xylose. SDS-PAGE analysis of culture supernatants revealed abundant production of an extracellular protein when cells were grown in xylose medium. The N-terminal sequence of the extracellular protein was identical to a part of the inulinase encoded by INU1 in the genome. Inulinase is an enzyme hydrolyzing ß-2,1-fructosyl bond in inulin and sucrose and is not required for xylose assimilation. Disruption of INU1 in the strain DMKU 3-1042 lost the production of the extracellular protein and resulted in growth defect in sucrose and inulin media, indicating that the extracellular protein was inulinase (sucrase). In addition, six K. marxianus strains among the 16 strains that were analyzed produced more inulinase in xylose medium than in glucose medium. However, expression analysis indicated that the INU1 promoter activity was lower in the xylose medium than in the glucose medium, suggesting that enhanced production of inulinase is controlled in a post-transcriptional manner. The production of inulinase was also higher in cultures with more agitation, suggesting that oxygen supply affects the production of inulinase. Taken together, these results suggest that both xylose and oxygen supply shift cellular metabolism to enhance the production of extracellular inulinase.


Assuntos
Glicosídeo Hidrolases/metabolismo , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/metabolismo , Xilose/metabolismo , Xilose/farmacologia , Espaço Extracelular/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Metabolismo/efeitos dos fármacos , Sacarose/metabolismo , Sacarose/farmacologia
11.
Appl Biochem Biotechnol ; 184(3): 919-934, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28918541

RESUMO

From three cell-associated ß-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60-70 °C) over a pH range of 5-9 with a specific activity of 163.3 units (U) mg-1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-ß-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 µmol min-1 mg-1 protein, respectively. When combining this ß-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g-1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g-1 ß-xylosidase and 16 U g-1 xylanase after incubation for 4 h at 70 °C and pH 6.0.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/química , Xilanos/química , Xilosidases/química , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise
12.
FEMS Yeast Res ; 17(3)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444380

RESUMO

Kluyveromyces marxianus is a safe yeast used in the food and biotechnology sectors. One of the important traits that sets it apart from the familiar yeasts, Saccharomyces cerevisiae, is its capacity to grow using lactose as a carbon source. Like in its close relative, Kluyveromyces lactis, this requires lactose transport via a permease and intracellular hydrolysis of the disaccharide. Given the importance of the trait, it was intriguing that most, but not all, strains of K. marxianus are reported to consume lactose efficiently. In this study, primarily through heterologous expression in S. cerevisiae and K. marxianus, it was established that a single gene, LAC12, is responsible for lactose uptake in K. marxianus. Strains that failed to transport lactose showed variation in 13 amino acids in the Lac12p protein, rendering the protein non-functional for lactose transport. Genome analysis showed that the LAC12 gene is present in four copies in the subtelomeric regions of three different chromosomes but only the ancestral LAC12 gene encodes a functional lactose transporter. Other copies of LAC12 may be non-functional or have alternative substrates. The analysis raises some interesting questions regarding the evolution of sugar transporters in K. marxianus.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Kluyveromyces/genética , Lactose/metabolismo , Proteínas de Membrana Transportadoras/genética , Polimorfismo Genético , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos Fúngicos/química , Meios de Cultura/química , Fermentação , Proteínas Fúngicas/metabolismo , Dosagem de Genes , Cinética , Kluyveromyces/classificação , Kluyveromyces/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
13.
Methods Mol Biol ; 1472: 237-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27671945

RESUMO

Conventional gene synthesis is usually accompanied by sequence errors, which are often deletions derived from chemically synthesized oligonucleotides. Such deletions lead to frame shifts and mostly result in premature translational terminations. Therefore, in-frame fusion of a marker gene to the downstream of a synthetic gene is an effective strategy to select for frame-shift-free synthetic genes. Functional expression of fused marker genes indicates that synthetic genes are translated without premature termination, i.e., error-less synthetic genes. A recently developed nonhomologous end joining (NHEJ)-mediated DNA cloning method in the yeast Kluyveromyces marxianus is suitable for the selection of frame-shift-free synthetic genes. Transformation and NHEJ-mediated in-frame joining of a synthetic gene with a selection marker gene enables colony formation of only the yeast cells containing synthetic genes without premature termination. This method increased selection frequency of error-less synthetic genes by 3- to 12-fold.


Assuntos
DNA/isolamento & purificação , Genes Sintéticos/genética , Kluyveromyces/genética , Sequência de Aminoácidos , Sequência de Bases , DNA/genética , Reparo do DNA por Junção de Extremidades , Mutação da Fase de Leitura , Transformação Genética
14.
Appl Microbiol Biotechnol ; 101(1): 241-251, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27734122

RESUMO

Saccharomyces cerevisiae is one of the most suitable microorganisms for recombinant protein production. To enhance protein production, various expression systems have been intensively studied. However, the effect of introns on protein expression has not been examined deeply in S. cerevisiae. In this study, we analyzed the effect of some introns on protein expression. RPS25A, RPS26A, and RPS26B contain single introns within the 5´-untranslated regions (5´-UTRs), and RPS24A has an intron just downstream of the initiation codon. Expression activity of the promoter regions containing introns (intron promoters) were analyzed by luciferase reporter assays. These intron promoters showed higher expression than the TDH3 promoter (TDH3p), which is one of the strongest promoters in S. cerevisiae. Deletion of the introns from these promoters decreased luciferase expression, indicating that introns have a role in enhancing protein expression. To develop artificial strong intron promoters, several chimeric promoters were constructed using the TDH3p and the RPS25A intron promoter. A construct containing the entire TDH3p followed by the RPS25A intron showed about 50-fold higher expression than the TDH3p alone. Inducible expressions driven by the GAL10 promoter and the CUP1 promoter were also enhanced by the RPS25A intron. However, enhancement of mRNA accumulation by the TDH3p and the GAL10 promoter with the RPS25A intron was lower than the effect on luciferase activity, suggesting that the intron affects post-transcriptionally. The chimeric promoter, TDH3p-RPS25A-intron, enhanced expressions of some, but not all proteins examined, indicating that 5'-UTR introns increase production of a certain type of recombinant proteins in S. cerevisiae.


Assuntos
Regiões 5' não Traduzidas , Regulação Fúngica da Expressão Gênica , Íntrons , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fusão Gênica Artificial , Perfilação da Expressão Gênica , Genes Reporter , Luciferases/análise , Luciferases/genética , Regiões Promotoras Genéticas , Transcrição Gênica
15.
Biosci Biotechnol Biochem ; 80(4): 655-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26566045

RESUMO

Environmental adaptation is considered as one of the most challenging subjects in biology to understand evolutionary or ecological diversification processes and in biotechnology to obtain useful microbial strains. Temperature is one of the important environmental stresses; however, microbial adaptation to higher temperatures has not been studied extensively. For industrial purposes, the use of thermally adapted strains is important, not only to reduce the cooling expenses of the fermentation system, but also to protect fermentation production from accidental failure of thermal management. Recent progress in next-generation sequencing provides a powerful tool to track the genomic changes of the adapted strains and allows us to compare genomic DNA sequences of conventional strains with those of their closely related thermotolerant strains. In this article, we have attempted to summarize our recent approaches to produce thermotolerant strains by thermal adaptation and comparative genomic analyses of Acetobacter pasteurianus for high-temperature acetic acid fermentations, and Zymomonas mobilis and Kluyveromyces marxianus for high-temperature ethanol fermentations. Genomic analysis of the adapted strains has found a large number of mutations and/or disruptions in highly diversified genes, which could be categorized into groups related to cell surface functions, ion or amino acid transporters, and some transcriptional factors. Furthermore, several phenotypic and genetic analyses revealed that the thermal adaptation could lead to decreased ROS generation in cells that produce higher ROS levels at higher temperatures. Thus, it is suggested that the thermally adapted cells could become robust and resistant to many stressors, and thus could be useful for high-temperature fermentations.


Assuntos
Adaptação Fisiológica , Fermentação , Genoma Bacteriano , Genoma Fúngico , Temperatura Alta , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Acetobacter/fisiologia , Elementos de DNA Transponíveis , Kluyveromyces/genética , Kluyveromyces/metabolismo , Kluyveromyces/fisiologia
16.
J Biol Chem ; 290(49): 29506-18, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26442587

RESUMO

Autophagy is a conserved degradation process in which autophagosomes are generated by cooperative actions of multiple autophagy-related (Atg) proteins. Previous studies using the model yeast Saccharomyces cerevisiae have provided various insights into the molecular basis of autophagy; however, because of the modest stability of several Atg proteins, structural and biochemical studies have been limited to a subset of Atg proteins, preventing us from understanding how multiple Atg proteins function cooperatively in autophagosome formation. With the goal of expanding the scope of autophagy research, we sought to identify a novel organism with stable Atg proteins that would be advantageous for in vitro analyses. Thus, we focused on a newly isolated thermotolerant yeast strain, Kluyveromyces marxianus DMKU3-1042, to utilize as a novel system elucidating autophagy. We developed experimental methods to monitor autophagy in K. marxianus cells, identified the complete set of K. marxianus Atg homologs, and confirmed that each Atg homolog is engaged in autophagosome formation. Biochemical and bioinformatic analyses revealed that recombinant K. marxianus Atg proteins have superior thermostability and solubility as compared with S. cerevisiae Atg proteins, probably due to the shorter primary sequences of KmAtg proteins. Furthermore, bioinformatic analyses showed that more than half of K. marxianus open reading frames are relatively short in length. These features make K. marxianus proteins broadly applicable as tools for structural and biochemical studies, not only in the autophagy field but also in other fields.


Assuntos
Autofagia , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia Computacional , Fluorometria , Proteínas de Fluorescência Verde , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Microscopia de Fluorescência , Fases de Leitura Aberta , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade
17.
Mol Biotechnol ; 57(11-12): 1018-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26350674

RESUMO

Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs-DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region-could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells.


Assuntos
Regulação da Expressão Gênica , Técnicas de Amplificação de Ácido Nucleico , Peroxissomos/química , Regiões Promotoras Genéticas , Regiões Terminadoras Genéticas , Fragmentação do DNA , Primers do DNA , Células HEK293 , Células HeLa , Antígenos de Superfície da Hepatite B/química , Humanos , Sinais de Localização Nuclear , Oligopeptídeos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Deleção de Sequência , Transfecção
18.
FEMS Yeast Res ; 15(6)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26136515

RESUMO

Gene expression analysis provides valuable information to evaluate cellular state. Unlike quantitative mRNA analysis techniques like reverse-transcription PCR and microarray, expression analysis using a reporter gene has not been commonly used for multiple-gene analysis, probably due to the difficulty in preparing multiple reporter-gene constructs. To circumvent this problem, we developed a novel one-step reporter-gene construction system mediated by non-homologous end joining (NHEJ) in the yeast Kluyveromyces marxianus. As a selectable reporter gene, the ScURA3 selection marker was fused in frame with a red fluorescent gene yEmRFP (ScURA3:yEmRFP). The N-terminally truncated ScURA3:yEmRFP fragment was prepared by PCR. Promoter sequences were also prepared by PCR using primers containing the sequence of the deleted ScURA3 N-terminus to attach at their 3(') ends. The two DNA fragments were used for the transformation of a ura3(-) strain of K. marxianus, in which two DNA fragments are randomly joined and integrated into the chromosome through NHEJ. Only the correctly aligned fragments produced transformants on uracil-deficient medium and expressed red fluorescence under the control of the introduced promoters. A total of 36 gene promoters involved in glycolysis and other pathways were analyzed. Fluorescence measurements of these strains allowed real-time gene expression analysis in different culture conditions.


Assuntos
Fusão Gênica Artificial , Clonagem Molecular/métodos , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Genes Reporter , Kluyveromyces/genética , Regiões Promotoras Genéticas , Meios de Cultura/química , Fluorometria/métodos , Vetores Genéticos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Plasmídeos , Reação em Cadeia da Polimerase , Recombinação Genética , Seleção Genética , Transformação Genética , Proteína Vermelha Fluorescente
19.
Mol Biotechnol ; 57(8): 767-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25997599

RESUMO

Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit ß-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3'-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.


Assuntos
Primers do DNA/química , Expressão Gênica , Plasmídeos/química , Reação em Cadeia da Polimerase/métodos , Regiões Terminadoras Genéticas , Animais , Primers do DNA/genética , Escherichia coli/genética , Células HEK293 , Células HeLa , Humanos , Plasmídeos/genética , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transfecção
20.
Appl Microbiol Biotechnol ; 99(16): 6737-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25936378

RESUMO

Many fusion genes, which are the result of chromosomal translocation and work as an oncogene, have been recently identified, but their mode of actions is still unclear. Here, we performed a yeast mutant screening for oncogenes of Ewing's sarcoma to easily identify essential regions responsible for fusion protein functions using a yeast genetic system. Three kinds of oncogenes including EWS/FLI1, EWS/ERG, and EWS/E1AF exhibited growth inhibition in yeast. In this screening, we identified 13 single amino acid substitution mutants which could suppress growth inhibition by oncogenes. All of the point mutation positions of the EWS/ETS family proteins were located within the ETS domain, which is responsible for the interaction with a specific DNA motif. Eight-mutated residues within the ETS domain matched to 13 completely conserved amino acid residues in the human ETS domains. Moreover, mutants also showed reduced transcriptional activities on the DKK2 promoter, which is upregulated by the EWS/ETS family, compared to that of the wild type. These results suggest that the ETS domain in the EWS/ETS family proteins may be a primary target for growth inhibition of Ewing's sarcoma and that this yeast screening system can be applied for the functional screening of the oncogenes.


Assuntos
Proteínas E1A de Adenovirus/genética , Testes Genéticos/métodos , Proteínas Mutantes/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Proto-Oncogênicas/genética , Sarcoma de Ewing/genética , Transativadores/genética , Proteínas E1A de Adenovirus/metabolismo , Substituição de Aminoácidos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets , Transativadores/metabolismo , Regulador Transcricional ERG , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...