Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(6): 1245-1256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778242

RESUMO

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.


Assuntos
Adaptação Fisiológica , Domesticação , Secas , Raízes de Plantas , Plântula , Água , Zea mays , Zea mays/genética , Zea mays/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Plântula/genética , Água/metabolismo , Mapeamento Cromossômico , Fenótipo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Direct ; 7(8): e519, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600238

RESUMO

With ongoing climate change and the increase in extreme weather events, especially droughts, the challenge of maintaining food security is becoming ever greater. Locally adapted landraces of crops represent a valuable source of adaptation to stressful environments. In the light of future droughts-both by altered soil water supply and increasing atmospheric water demand (vapor pressure deficit [VPD])-plants need to improve their water efficiency. To do so, plants can enhance their access to soil water by improving rhizosphere hydraulic conductivity via the exudation of mucilage. Furthermore, plants can reduce transpirational water loss via stomatal regulation. Although the role of mucilage and stomata regulation on plant water management have been extensively studied, little is known about a possible coordination between root mucilage properties and stomatal sensitivity as well as abiotic drivers shaping the development of drought resistant trait suits within landraces. Mucilage properties and stomatal sensitivity of eight Mexican landraces of Zea mays in contrast with one inbred line were first quantified under controlled conditions and second related to water demand and supply at their respective site of origin. Mucilage physical properties-namely, viscosity, contact angle, and surface tension-differed between the investigated maize varieties. We found strong influences of precipitation seasonality, thus plant water availability, on mucilage production (R 2 = .88, p < .01) and mucilage viscosity (R 2 = .93, p < .01). Further, stomatal sensitivity to increased atmospheric water demand was related to mucilage viscosity and contact angle, both of which are crucial in determining mucilage's water repellent, thus maladaptive, behavior upon soil drying. The identification of landraces with pre-adapted suitable trait sets with regard to drought resistance is of utmost importance, for example, trait combinations such as exhibited in one of the here investigated landraces. Our results suggest a strong environmental selective force of seasonality in plant water availability on mucilage properties as well as regulatory stomatal effects to avoid mucilage's maladaptive potential upon drying and likely delay critical levels of hydraulic dysfunction. By this, landraces from highly seasonal climates may exhibit beneficial mucilage and stomatal traits to prolong plant functioning under edaphic drought. These findings may help breeders to efficiently screen for local landraces with pre-adaptations to drought to ultimately increase crop yield resistance under future climatic variability.

3.
Ann Bot ; 131(2): 373-386, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479887

RESUMO

BACKGROUND AND AIMS: Stomatal regulation allows plants to promptly respond to water stress. However, our understanding of the impact of above and belowground hydraulic traits on stomatal regulation remains incomplete. The objective of this study was to investigate how key plant hydraulic traits impact transpiration of maize during soil drying. We hypothesize that the stomatal response to soil drying is related to a loss in soil hydraulic conductivity at the root-soil interface, which in turn depends on plant hydraulic traits. METHODS: We investigate the response of 48 contrasting maize (Zea mays) genotypes to soil drying, utilizing a novel phenotyping facility. In this context, we measure the relationship between leaf water potential, soil water potential, soil water content and transpiration, as well as root, rhizosphere and aboveground plant traits. KEY RESULTS: Genotypes differed in their responsiveness to soil drying. The critical soil water potential at which plants started decreasing transpiration was related to a combination of above and belowground traits: genotypes with a higher maximum transpiration and plant hydraulic conductance as well as a smaller root and rhizosphere system closed stomata at less negative soil water potentials. CONCLUSIONS: Our results demonstrate the importance of belowground hydraulics for stomatal regulation and hence drought responsiveness during soil drying. Furthermore, this finding supports the hypothesis that stomata start to close when soil hydraulic conductivity drops at the root-soil interface.


Assuntos
Dessecação , Zea mays , Zea mays/genética , Genótipo , Fenótipo , Folhas de Planta/genética , Transpiração Vegetal , Solo , Estômatos de Plantas , Raízes de Plantas/genética
4.
Front Plant Sci ; 11: 587610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363554

RESUMO

Mucilage, a gelatinous substance comprising mostly polysaccharides, is exuded by maize nodal and underground root tips. Although mucilage provides several benefits for rhizosphere functions, studies on the variation in mucilage amounts and its polysaccharide composition between genotypes are still lacking. In this study, eight maize (Zea mays L.) genotypes from different globally distributed agroecological zones were grown under identical abiotic conditions in a randomized field experiment. Mucilage exudation amount, neutral sugars and uronic acids were quantified. Galactose (∼39-42%), fucose (∼22-30%), mannose (∼11-14%), and arabinose (∼8-11%) were the major neutral sugars in nodal root mucilage. Xylose (∼1-4%), and glucose (∼1-4%) occurred only in minor proportions. Glucuronic acid (∼3-5%) was the only uronic acid detected. The polysaccharide composition differed significantly between maize genotypes. Mucilage exudation was 135 and 125% higher in the Indian (900 M Gold) and Kenyan (DH 02) genotypes than in the central European genotypes, respectively. Mucilage exudation was positively associated with the vapor pressure deficit of the genotypes' agroecological zone. The results indicate that selection for environments with high vapor pressure deficit may favor higher mucilage exudation, possibly because mucilage can delay the onset of hydraulic failure during periods of high vapor pressure deficit. Genotypes from semi-arid climates might offer sources of genetic material for beneficial mucilage traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...