Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(19)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38306695

RESUMO

We carried outin situannealing of InP nanowires (NWs) in a metal-organic vapor phase epitaxial (MOVPE) growth reactor to control and reduce the tip size of InP NWs. InP NWs were grown by selective-area (SA) MOVPE on partially masked (111)A InP substrates, and annealing was successively applied in tertiarybutylphosphine (TBP) ambient. Initially, the InP NWs had a hexagonal cross-section with{112¯}facets vertical to the substrates; they became tapered, and the edges were rounded by annealing. By appropriately selecting the annealing temperature and initial NW diameter, the tip size of the NW was reduced and NWs with a tip size of 20 nm were successfully formed. Subsequently, a thin InAsP layer was grown on the annealed NWs and their photoluminescence was investigated at low temperatures. The characterization results indicated the formation of InAsP quantum dots (QDs) emitting in the telecom band. Our approach is useful for reducing the size of the NWs and for the controlled formation of InAsP QDs embedded in InP NWs in photonic devices compatible with telecom bands.

2.
Nanotechnology ; 31(39): 394003, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658871

RESUMO

Semiconductor nanowires (NWs), which have nanoscale footprints, enable us to realize various quantum structures with excellent position and size controllability, utilizing a wide range of materials for heterostructures. In addition, enhancing light extraction and controlling spontaneous emission by modifying their size and shape are possible. Thus, NWs are promising materials for nanoscale light sources applicable from visible to telecommunication bands. In this study, we grew InP/InAsP/InP axial heterostructure NWs, where the InAsP layer was embedded to serve as an active layer, by selective-area growth and demonstrated vertical NW array light-emitting diodes (LEDs) as a step towards realizing on-demand single photon sources. The NW array LEDs showed rectifying characteristics and electroluminescence originating from the embedded InAsP layer in the near-infrared region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...