Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Aging Neurosci ; 16: 1362457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515515

RESUMO

Background and purpose: Glymphatic system in type 2 diabetes mellitus (T2DM) but not in the prodrome, prediabetes (Pre-DM) was investigated using diffusion tensor image analysis along the perivascular space (DTI-ALPS). Association between glymphatic system and insulin resistance of prominent characteristic in T2DM and Pre-DM between is yet elucidated. Therefore, this study delves into the interstitial fluid dynamics using the DTI-ALPS in both Pre-DM and T2DM and association with insulin resistance. Materials and methods: In our cross-sectional study, we assessed 70 elderly individuals from the Bunkyo Health Study, which included 22 with Pre-DM, 18 with T2DM, and 33 healthy controls with normal glucose metabolism (NGM). We utilized the general linear model (GLM) to evaluate the ALPS index based on DTI-ALPS across these groups, considering variables like sex, age, intracranial volume, years of education, anamnesis of hypertension and hyperlipidemia, and the total Fazekas scale. Furthermore, we have explored the relationship between the ALPS index and insulin resistance, as measured by the homeostasis model assessment of insulin resistance (HOMA-IR) using GLM and the same set of covariates. Results: In the T2DM group, the ALPS index demonstrated a reduction compared with the NGM group [family-wise error (FWE)-corrected p < 0.001; Cohen's d = -1.32]. Similarly, the Pre-DM group had a lower ALPS index than the NGM group (FWE-corrected p < 0.001; Cohen's d = -1.04). However, there was no significant disparity between the T2DM and Pre-DM groups (FWE-corrected p = 1.00; Cohen's d = -0.63). A negative correlation was observed between the ALPS index and HOMA-IR in the combined T2DM and Pre-DM groups (partial correlation coefficient r = -0.35, p < 0.005). Conclusion: The ALPS index significantly decreased in both the pre-DM and T2DM groups and showed a correlated with insulin resistance. This indicated that changes in interstitial fluid dynamics are associated with insulin resistance.

2.
J Magn Reson Imaging ; 59(5): 1476-1493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37655849

RESUMO

The comprehension of the glymphatic system, a postulated mechanism responsible for the removal of interstitial solutes within the central nervous system (CNS), has witnessed substantial progress recently. While direct measurement techniques involving fluorescence and contrast agent tracers have demonstrated success in animal studies, their application in humans is invasive and presents challenges. Hence, exploring alternative noninvasive approaches that enable glymphatic research in humans is imperative. This review primarily focuses on several noninvasive magnetic resonance imaging (MRI) techniques, encompassing perivascular space (PVS) imaging, diffusion tensor image analysis along the PVS, arterial spin labeling, chemical exchange saturation transfer, and intravoxel incoherent motion. These methodologies provide valuable insights into the dynamics of interstitial fluid, water permeability across the blood-brain barrier, and cerebrospinal fluid flow within the cerebral parenchyma. Furthermore, the review elucidates the underlying concept and clinical applications of these noninvasive MRI techniques, highlighting their strengths and limitations. It addresses concerns about the relationship between glymphatic system activity and pathological alterations, emphasizing the necessity for further studies to establish correlations between noninvasive MRI measurements and pathological findings. Additionally, the challenges associated with conducting multisite studies, such as variability in MRI systems and acquisition parameters, are addressed, with a suggestion for the use of harmonization methods, such as the combined association test (COMBAT), to enhance standardization and statistical power. Current research gaps and future directions in noninvasive MRI techniques for assessing the glymphatic system are discussed, emphasizing the need for larger sample sizes, harmonization studies, and combined approaches. In conclusion, this review provides invaluable insights into the application of noninvasive MRI methods for monitoring glymphatic system activity in the CNS. It highlights their potential in advancing our understanding of the glymphatic system, facilitating clinical applications, and paving the way for future research endeavors in this field. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 5.


Assuntos
Sistema Glinfático , Humanos , Animais , Sistema Glinfático/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Barreira Hematoencefálica , Líquido Extracelular/diagnóstico por imagem , Meios de Contraste , Encéfalo/diagnóstico por imagem
3.
Invest Radiol ; 59(1): 13-25, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707839

RESUMO

ABSTRACT: Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.


Assuntos
Neurocirurgia , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Procedimentos Neurocirúrgicos/métodos
4.
AJNR Am J Neuroradiol ; 45(1): 66-71, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38123957

RESUMO

BACKGROUND AND PURPOSE: Impaired glymphatic function has been suggested to be implicated in the pathophysiology of MS and aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder. This study aimed to investigate the interstitial fluid dynamics in the brain in patients with myelin oligodendrocyte glycoprotein antibody disorders (MOGAD), another demyelinating disorder, using a noninvasive imaging technique called the diffusivity along the perivascular space (ALPS) index. MATERIALS AND METHODS: A prospective study was conducted on 16 patients with MOGAD in remission and 22 age- and sex-matched healthy control subjects. MR imaging was performed using a 3T scanner, and the ALPS index was calculated using diffusion MR imaging data with a b-value of 1000 s/mm2. The ALPS index and gray matter volumes were compared between the 2 groups, and these parameters were correlated with the Expanded Disability Status Scale. RESULTS: The mean ALPS index of patients with MOGAD was significantly lower than that of healthy controls (Cohen d = 0.93, false discovery rate-corrected P = .02). The lower mean ALPS index was significantly associated with a worse Expanded Disability Status Scale score (Spearman ρ = -0.51; 95% CI, -0.85 to -0.02; P = .03). However, cortical volume and deep gray matter volume were not significantly different between the 2 groups, and they were not correlated with the Expanded Disability Status Scale. CONCLUSIONS: This study suggests that patients with MOGAD may have impaired glymphatic function, as measured by the ALPS index, which is associated with patient disability. Further study is warranted with a larger sample size.


Assuntos
Sistema Glinfático , Neuromielite Óptica , Humanos , Imunoglobulina G , Glicoproteína Mielina-Oligodendrócito , Estudos Prospectivos , Encéfalo , Autoanticorpos
5.
Aging Dis ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029401

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) of brain has helped elucidate the microstructural changes of psychiatric and neurodegenerative disorders. Inconsistency between MRI models has hampered clinical application of dMRI-based metrics. Using harmonized dMRI data of 300 scans from 69 traveling subjects (TS) scanning the same individuals at multiple conditions with 13 MRI models and 2 protocols, the widely-used metrics such as diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) were evaluated before and after harmonization with a combined association test (ComBat) or TS-based general linear model (TS-GLM). Results showed that both ComBat and TS-GLM significantly reduced the effects of the MRI site, model, and protocol for diffusion metrics while maintaining the intersubject biological effects. The harmonization power of TS-GLM based on TS data model is more powerful than that of ComBat. In conclusion, our research demonstrated that although ComBat and TS-GLM harmonization approaches were effective at reducing the scanner effects of the site, model, and protocol for DTI and NODDI metrics in WM, they exhibited high retainability of biological effects. Therefore, we suggest that, after harmonizing DTI and NODDI metrics, a multisite study with large cohorts can accurately detect small pathological changes by retaining pathological effects.

6.
J Magn Reson Imaging ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877463

RESUMO

BACKGROUND: "Batch effect" in MR images, due to vendor-specific features, MR machine generations, and imaging parameters, challenges image quality and hinders deep learning (DL) model generalizability. PURPOSE: We aim to develop a DL model using contrast adjustment and super-resolution to reduce diffusion-weighted images (DWIs) diversity across magnetic field strengths and imaging parameters. STUDY TYPE: Retrospective. SUBJECTS: The DL model was built using an open dataset from one individual. The MR machine identification model was trained and validated on a dataset of 1134 adults (54% females, 46% males), with 1050 subjects showing no DWI abnormalities and 84 with conditions like stroke and tumors. The 21,000 images were divided into 80% for training, 20% for validation, and 3500 for testing. FIELD STRENGTH/SEQUENCE: Seven MR scanners from four manufacturers with 1.5 T and 3 T magnetic field strengths. DWIs were acquired using spin-echo sequences and high-resolution T2WIs using the T2-SPACE sequence. ASSESSMENT: An experienced, board-certified radiologist evaluated the effectiveness of restoring high-resolution T2WI and harmonizing diverse DWI with metrics such as PSNR and SSIM, and the texture and frequency attributes were further analyzed using gray-level co-occurrence matrix and 1-dimensional power spectral density. The model's impact on machine-specific characteristics was gauged through the performance metrics of a ResNet-50 model. Comprehensive statistical tests were employed for statistical robustness, including McNemar's test and the Dice index. RESULTS: Our DL protocol reduced DWI contrast and resolution variation. ResNet-50 model's accuracy decreased from 0.9443 to 0.5786, precision from 0.9442 to 0.6494, recall from 0.9443 to 0.5786, and F1 score from 0.9438 to 0.5587. The t-SNE visualization indicated more consistent image features across multiple MR devices. Autoencoder halved learning iterations; Dice coefficient >0.74 confirmed signal reproducibility in 84 lesions. CONCLUSION: This study presents a DL strategy to mitigate batch effects in diffusion MR images, improving their quality and generalizability. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

7.
NPJ Parkinsons Dis ; 9(1): 122, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591877

RESUMO

Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are characterized by progressive white matter (WM) alterations associated with the prion-like spreading of four-repeat tau, which has been pathologically confirmed. It has been challenging to monitor the WM degeneration patterns underlying the clinical deficits in vivo. Here, a fiber-specific fiber density and fiber cross-section, and their combined measure estimated using fixel-based analysis (FBA), were cross-sectionally and longitudinally assessed in PSP (n = 20), CBS (n = 17), and healthy controls (n = 20). FBA indicated disease-specific progression patterns of fiber density loss and subsequent bundle atrophy consistent with the tau propagation patterns previously suggested in a histopathological study. This consistency suggests the new insight that FBA can monitor the progressive tau-related WM changes in vivo. Furthermore, fixel-wise metrics indicated strong correlations with motor and cognitive dysfunction and the classifiability of highly overlapping diseases. Our findings might also provide a tool to monitor clinical decline and classify both diseases.

8.
Jpn J Radiol ; 41(11): 1226-1235, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37273112

RESUMO

PURPOSE: This study aimed to evaluate the along the perivascular space (ALPS) index based on the diffusion tensor image ALPS (DTI-ALPS) in corticobasal degeneration with corticobasal syndrome (CBD-CBS) and investigate its correlation with motor and cognitive functions. MATERIALS AND METHODS: The data of 21 patients with CBD-CBS and 17 healthy controls (HCs) were obtained from the 4-Repeat Tauopathy Neuroimaging Initiative and the Frontotemporal Lobar Degeneration Neuroimaging Initiative databases. Diffusion magnetic resonance imaging was performed using a 3-Tesla MRI scanner. The ALPS index based on DTI-ALPS was automatically calculated after preprocessing. The ALPS index was compared between the CBD-CBS and HC groups via a general linear model analysis, with covariates such as age, sex, years of education, and intracranial volume (ICV). Furthermore, to confirm the relation between the ALPS index and the motor and cognitive score in CBD-CBS, the partial Spearman's rank correlation coefficient was calculated with covariates such as age, sex, years of education, and ICV. A p value of < 0.05 was considered as statistically significant in all statistical analyses. RESULTS: The ALPS index of CBD-CBS was significantly lower than that of HC (Cohen's d = - 1.53, p < 0.005). Moreover, the ALPS index had a significant positive correlation with the mini mental state evaluation score (rs = 0.65, p < 0.005) and a significant negative correlation with the unified Parkinson's Disease Rating Scale III score (rs = - 0.75, p < 0.001). CONCLUSION: The ALPS index of patients with CBD-CBS, which is significantly lower than that of HCs, is significantly associated with motor and cognitive functions.


Assuntos
Degeneração Corticobasal , Sistema Glinfático , Humanos , Bases de Dados Factuais , Difusão , Imagem de Difusão por Ressonância Magnética
9.
Jpn J Radiol ; 41(12): 1335-1343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37368182

RESUMO

PURPOSE: This study aimed to evaluate the relationship between sleep quality as assessed using the Pittsburgh Sleep Quality Index (PSQI) and the index of diffusivity along the perivascular space (ALPS index), a possible indirect indicator of glymphatic system activity. MATERIALS AND METHODS: This study included the diffusion magnetic resonance imaging (MRI) data of 317 people with sleep disruption and 515 healthy controls (HCs) from the Human Connectome Project (WU-MINN HCP 1200). The ALPS index was calculated automatically based on diffusion tensor image analysis (DTI)-ALPS of diffusion MRI. The ALPS index of the sleep disruption and HC groups was compared using general linear model (GLM) analysis with covariates, such as age, sex, level of education, and intracranial volume. In addition, to confirm the relationship between sleep quality and the ALPS index in the sleep disruption group as well as evaluate the effect of each PSQI component on the ALPS index, correlation analyses between the ALPS indices and PSQI scores of all the components and between the ALPS index and each PSQI component was performed using GLM analysis with the abovementioned covariates, respectively. RESULTS: The ALPS index was significantly lower in the sleep disruption group than in the HC group (p = 0.001). Moreover, the ALPS indices showed significant negative correlations with the PSQI scores of all the components (false discovery rate [FDR]-corrected p < 0.001). Two significant negative correlations were also found between the ALPS index and PSQI component 2 (sleep latency, FDR-corrected p < 0.001) and 6 (the use of sleep medication, FDR-corrected p < 0.001). CONCLUSION: Our findings suggest that glymphatic system impairment contributes to sleep disruption in young adults.


Assuntos
Sistema Glinfático , Adulto Jovem , Humanos , Sistema Glinfático/diagnóstico por imagem , Sono , Difusão , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador
10.
Jpn J Radiol ; 41(9): 947-954, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37162692

RESUMO

PURPOSE: The method of diffusion tensor image analysis along the perivascular space (DTI-ALPS) was gathering attention to evaluate the brain's glymphatic function or interstitial fluid dynamics. However, to the best knowledge, no study was conducted on the reproducibility of these automated methods for ALPS index values. Therefore, the current study evaluated the ALPS index reproducibility based on DTI-ALPS using two major automated calculation techniques in scan and rescan of the same subject on the same day. MATERIALS AND METHODS: This study included 23 participants, including 2 with Alzheimer's disease, 15 with mild cognitive impairment, and 6 with cognitive normals. Scan and rescan data of diffusion magnetic resonance images were obtained, as well as automatically index for ALPS (ALPS index) and ALPS index maintaining tensor vector orientation information (vALPS index) with region of interest on the template fractional anisotropy map calculated by FSL software.These ALPS indices were compared in terms of scan and rescan reproducibility. RESULTS: The absolute difference in ALPS-index values between scan and rescan was larger in the ALPS index than in the vALPS index by approximately 0.6% as the relative difference. Cohen's d for the left and right ALPS indices between methods were 0.121 and 0.159, respectively. CONCLUSION: The vALPS index based on DTI-ALPS maintaining tensor vector orientation information has higher reproducibility than the ALPS index. This result encourages a multisite study on the ALPS index with a large sample size and helps detect a subtle pathological change in the ALPS index.


Assuntos
Encéfalo , Disfunção Cognitiva , Humanos , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador
11.
Front Neurol ; 14: 1100736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873446

RESUMO

Background and purpose: Exposure to contact sports in youth causes brain health problems later in life. For instance, the repetitive head impacts in contact sports might contribute to glymphatic clearance impairment and cognitive decline. This study aimed to assess the effect of contact sports participation in youth on glymphatic function in old age and the relationship between glymphatic function and cognitive status using the analysis along the perivascular space (ALPS) index. Materials and methods: A total of 52 Japanese older male subjects were included in the study, including 12 who played heavy-contact sports (mean age, 71.2 years), 15 who played semicontact sports (mean age, 73.1 years), and 25 who played noncontact sports (mean age, 71.3 years) in their youth. All brain diffusion-weighted images (DWIs) of the subjects were acquired using a 3T MRI scanner. The ALPS indices were calculated using a validated semiautomated pipeline. The ALPS indices from the left and right hemispheres were compared between groups using a general linear model, including age and years of education. Furthermore, partial Spearman's rank correlation tests were performed to assess the correlation between the ALPS indices and cognitive scores (Mini-Mental State Examination and the Japanese version of the Montreal Cognitive Assessment [MoCA-J]) after adjusting for age years of education and HbA1c. Results: The left ALPS index was significantly lower in the heavy-contact and semicontact groups than that in the noncontact group. Although no significant differences were observed in the left ALPS index between the heavy-contact and semicontact groups and in the right ALPS index among groups, a trend toward lower was found in the right ALPS index in individuals with semicontact and heavy-contact compared to the noncontact group. Both sides' ALPS indices were significantly positively correlated with the MoCA-J scores. Conclusion: The findings indicated the potential adverse effect of contact sports experience in youth on the glymphatic system function in old age associated with cognitive decline.

12.
Int J Comput Assist Radiol Surg ; 18(2): 289-301, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36251150

RESUMO

PURPOSE: This study proposes a method to draw attention toward the specific radiological findings of coronavirus disease 2019 (COVID-19) in CT images, such as bilaterality of ground glass opacity (GGO) and/or consolidation, in order to improve the classification accuracy of input CT images. METHODS: We propose an induction mask that combines a similarity and a bilateral mask. A similarity mask guides attention to regions with similar appearances, and a bilateral mask induces attention to the opposite side of the lung to capture bilaterally distributed lesions. An induction mask for pleural effusion is also proposed in this study. ResNet18 with nonlocal blocks was trained by minimizing the loss function defined by the induction mask. RESULTS: The four-class classification accuracy of the CT images of 1504 cases was 0.6443, where class 1 was the typical appearance of COVID-19 pneumonia, class 2 was the indeterminate appearance of COVID-19 pneumonia, class 3 was the atypical appearance of COVID-19 pneumonia, and class 4 was negative for pneumonia. The four classes were divided into two subgroups. The accuracy of COVID-19 and pneumonia classifications was evaluated, which were 0.8205 and 0.8604, respectively. The accuracy of the four-class and COVID-19 classifications improved when attention was paid to pleural effusion. CONCLUSION: The proposed attention induction method was effective for the classification of CT images of COVID-19 patients. Improvement of the classification accuracy of class 3 by focusing on features specific to the class remains a topic for future work.


Assuntos
COVID-19 , Derrame Pleural , Pneumonia , Humanos , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Derrame Pleural/diagnóstico por imagem
13.
Magn Reson Med Sci ; 22(1): 57-66, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897147

RESUMO

PURPOSE: Myelination-related MR signal changes in white matter are helpful for assessing normal development in infants and children. A rule-based myelination evaluation workflow regarding signal changes on T1-weighted images (T1WIs) and T2-weighted images (T2WIs) has been widely used in radiology. This study aimed to simulate a rule-based workflow using a stacked deep learning model and evaluate age estimation accuracy. METHODS: The age estimation system involved two stacked neural networks: a target network-to extract five myelination-related images from the whole brain, and an age estimation network from extracted T1- and T2WIs separately. A dataset was constructed from 119 children aged below 2 years with two MRI systems. A four-fold cross-validation method was adopted. The correlation coefficient (CC), mean absolute error (MAE), and root mean squared error (RMSE) of the corrected chronological age of full-term birth, as well as the mean difference and the upper and lower limits of 95% agreement, were measured. Generalization performance was assessed using datasets acquired from different MR images. Age estimation was performed in Sturge-Weber syndrome (SWS) cases. RESULTS: There was a strong correlation between estimated age and corrected chronological age (MAE: 0.98 months; RMSE: 1.27 months; and CC: 0.99). The mean difference and standard deviation (SD) were -0.15 and 1.26, respectively, and the upper and lower limits of 95% agreement were 2.33 and -2.63 months. Regarding generalization performance, the performance values on the external dataset were MAE of 1.85 months, RMSE of 2.59 months, and CC of 0.93. Among 13 SWS cases, 7 exceeded the limits of 95% agreement, and a proportional bias of age estimation based on myelination acceleration was exhibited below 12 months of age (P = 0.03). CONCLUSION: Stacked deep learning models automated the rule-based workflow in radiology and achieved highly accurate age estimation in infants and children up to 2 years of age.


Assuntos
Aprendizado Profundo , Humanos , Criança , Lactente , Fluxo de Trabalho , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Automação
14.
Sci Rep ; 12(1): 20840, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460708

RESUMO

This study presents a novel framework for classifying and visualizing pneumonia induced by COVID-19 from CT images. Although many image classification methods using deep learning have been proposed, in the case of medical image fields, standard classification methods are unable to be used in some cases because the medical images that belong to the same category vary depending on the progression of the symptoms and the size of the inflamed area. In addition, it is essential that the models used be transparent and explainable, allowing health care providers to trust the models and avoid mistakes. In this study, we propose a classification method using contrastive learning and an attention mechanism. Contrastive learning is able to close the distance for images of the same category and generate a better feature space for classification. An attention mechanism is able to emphasize an important area in the image and visualize the location related to classification. Through experiments conducted on two-types of classification using a three-fold cross validation, we confirmed that the classification accuracy was significantly improved; in addition, a detailed visual explanation was achieved comparison with conventional methods.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Pessoal de Saúde , Confiança , Projetos de Pesquisa , Tomografia Computadorizada por Raios X
15.
Neurology ; 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123122

RESUMO

BACKGROUND AND OBJECTIVES: The glymphatic system is a whole-brain perivascular network, which promotes CSF/interstitial fluid exchange. Alterations to this system may play a pivotal role in amyloid ß (Aß) accumulation. However, its involvement in Alzheimer's disease (AD) pathogenesis is not fully understood. Here, we investigated the changes in noninvasive MRI measurements related to the perivascular network in patients with mild cognitive impairment (MCI) and AD. Additionally, we explored the associations of MRI measures with neuropsychological score, PET standardized uptake value ratio (SUVR), and Aß deposition. METHODS: MRI measures, including perivascular space (PVS) volume fraction (PVSVF), fractional volume of free water in white matter (FW-WM), and index of diffusivity along the perivascular space (ALPS index) of patients with MCI, those with AD, and healthy controls from the Alzheimer's Disease Neuroimaging Initiative database were compared. MRI measures were also correlated with the levels of CSF biomarkers, PET SUVR, and cognitive score in the combined subcohort of patients with MCI and AD. Statistical analyses were performed with age, sex, years of education, and APOE status as confounding factors. RESULTS: In total, 36 patients with AD, 44 patients with MCI, and 31 healthy controls were analyzed. Patients with AD had significantly higher total, WM, and basal ganglia PVSVF (Cohen's d = 1.15-1.48; p < 0.001), and FW-WM (Cohen's d = 0.73; p < 0.05) and a lower ALPS index (Cohen's d = 0.63; p < 0.05) than healthy controls. Meanwhile, the MCI group only showed significantly higher total (Cohen's d = 0.99; p < 0.05) and WM (Cohen's d = 0.91; p < 0.05) PVSVF. Low ALPS index was associated with lower CSF Aß42 (r s = 0.41, p fdr = 0.026), FDG-PET uptake (r s = 0.54, p fdr < 0.001), and worse multiple cognitive domain deficits. High FW-WM was also associated with lower CSF Aß42 (r s = -0.47, p fdr = 0.021) and worse cognitive performances. CONCLUSION: Our study indicates that changes in PVS-related MRI parameters occur in MCI and AD, possibly due to impairment of the glymphatic system. We also report the associations between MRI parameters and Aß deposition, neuronal change, and cognitive impairment in AD.

16.
Front Neurol ; 13: 814768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280291

RESUMO

Differentiating corticobasal degeneration presenting with corticobasal syndrome (CBD-CBS) from progressive supranuclear palsy with Richardson's syndrome (PSP-RS), particularly in early stages, is often challenging because the neurodegenerative conditions closely overlap in terms of clinical presentation and pathology. Although volumetry using brain magnetic resonance imaging (MRI) has been studied in patients with CBS and PSP-RS, studies assessing the progression of brain atrophy are limited. Therefore, we aimed to reveal the difference in the temporal progression patterns of brain atrophy between patients with CBS and those with PSP-RS purely based on cross-sectional data using Subtype and Stage Inference (SuStaIn)-a novel, unsupervised machine learning technique that integrates clustering and disease progression modeling. We applied SuStaIn to the cross-sectional regional brain volumes of 25 patients with CBS, 39 patients with typical PSP-RS, and 50 healthy controls to estimate the two disease subtypes and trajectories of CBS and PSP-RS, which have distinct atrophy patterns. The progression model and classification accuracy of CBS and PSP-RS were compared with those of previous studies to evaluate the performance of SuStaIn. SuStaIn identified distinct temporal progression patterns of brain atrophy for CBS and PSP-RS, which were largely consistent with previous evidence, with high reproducibility (99.7%) under cross-validation. We classified these diseases with high accuracy (0.875) and sensitivity (0.680 and 1.000, respectively) based on cross-sectional structural brain MRI data; the accuracy was higher than that reported in previous studies. Moreover, SuStaIn stage correctly reflected disease severity without the label of disease stage, such as disease duration. Furthermore, SuStaIn also showed the genialized performance of differentiation and reflection for CBS and PSP-RS. Thus, SuStaIn has potential for improving our understanding of disease mechanisms, accurately stratifying patients, and providing prognoses for patients with CBS and PSP-RS.

17.
Eur Radiol ; 32(7): 4791-4800, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35304637

RESUMO

OBJECTIVES: We aimed to investigate the influence of magnetic resonance fingerprinting (MRF) dictionary design on radiomic features using in vivo human brain scans. METHODS: Scan-rescans of three-dimensional MRF and conventional T1-weighted imaging were performed on 21 healthy volunteers (9 males and 12 females; mean age, 41.3 ± 14.6 years; age range, 22-72 years). Five patients with multiple sclerosis (3 males and 2 females; mean age, 41.2 ± 7.3 years; age range, 32-53 years) were also included. MRF data were reconstructed using various dictionaries with different step sizes. First- and second-order radiomic features were extracted from each dataset. Intra-dictionary repeatability and inter-dictionary reproducibility were evaluated using intraclass correlation coefficients (ICCs). Features with ICCs > 0.90 were considered acceptable. Relative changes were calculated to assess inter-dictionary biases. RESULTS: The overall scan-rescan ICCs of MRF-based radiomics ranged from 0.86 to 0.95, depending on dictionary step size. No significant differences were observed in the overall scan-rescan repeatability of MRF-based radiomic features and conventional T1-weighted imaging (p = 1.00). Intra-dictionary repeatability was insensitive to dictionary step size differences. MRF-based radiomic features varied among dictionaries (overall ICC for inter-dictionary reproducibility, 0.62-0.99), especially when step sizes were large. First-order and gray level co-occurrence matrix features were the most reproducible feature classes among different step size dictionaries. T1 map-derived radiomic features provided higher repeatability and reproducibility among dictionaries than those obtained with T2 maps. CONCLUSION: MRF-based radiomic features are highly repeatable in various dictionary step sizes. Caution is warranted when performing MRF-based radiomics using datasets containing maps generated from different dictionaries. KEY POINTS: • MRF-based radiomic features are highly repeatable in various dictionary step sizes. • Use of different MRF dictionaries may result in variable radiomic features, even when the same MRF acquisition data are used. • Caution is needed when performing radiomic analysis using data reconstructed from different dictionaries.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Idoso , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Adulto Jovem
18.
Int J Comput Assist Radiol Surg ; 17(1): 97-105, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34674136

RESUMO

PURPOSE: Artery contrasted computed tomography (CT) enables accurate observations of the arteries and surrounding structures, thus being widely used for the diagnosis of diseases such as aneurysm. To avoid the complications caused by contrast agent, this paper proposes an aorta-aware deep learning method to synthesize artery contrasted CT volume form non-contrast CT volume. METHODS: By introducing auxiliary multi-resolution segmentation tasks in the generator, we force the proposed network to focus on the regions of aorta and the other vascular structures. Then, the segmentation results produced by the auxiliary tasks were used to extract aorta. The detection of abnormal CT images containing aneurysm was implemented by estimating the maximum axial radius of aorta. RESULTS: In comparison with the baseline models, the proposed network with auxiliary tasks achieved better performances with higher peak signal-noise ratio value. In aorta regions which are supposed to be the main region of interest in many clinic scenarios, the average improvement can be up to 0.33dB. Using the synthesized artery contrasted CT, the F score of aneurysm detection achieved 0.58 at slice level and 0.85 at case level. CONCLUSION: This study tries to address the problem of non-contrast to artery contrasted CT modality translation by employing a deep learning model with aorta awareness. The auxiliary tasks help the proposed model focus on aorta regions and synthesize results with clearer boundaries. Additionally, the synthesized artery contrasted CT shows potential in identifying slices with abdominal aortic aneurysm, and may provide an option for patients with contrast agent allergy.


Assuntos
Aneurisma da Aorta Abdominal , Aorta , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Humanos , Tomografia Computadorizada por Raios X
19.
Invest Radiol ; 57(5): 327-333, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935652

RESUMO

OBJECTIVES: Renal cell carcinoma (RCC) is often found incidentally in asymptomatic individuals undergoing abdominal computed tomography (CT) examinations. The purpose of our study is to develop a deep learning-based algorithm for fully automated detection of small (≤4 cm) RCCs in contrast-enhanced CT images using a multicenter database and to evaluate its performance. MATERIALS AND METHODS: For the algorithmic detection of RCC, we retrospectively selected contrast-enhanced CT images of patients with histologically confirmed single RCC with a tumor diameter of 4 cm or less between January 2005 and May 2020 from 7 centers in the Japan Medical Image Database. A total of 453 patients from 6 centers were selected as dataset A, and 132 patients from 1 center were selected as dataset B. Dataset A was used for training and internal validation. Dataset B was used only for external validation. Nephrogenic phase images of multiphase CT or single-phase postcontrast CT images were used. Our algorithm consisted of 2-step segmentation models, kidney segmentation and tumor segmentation. For internal validation with dataset A, 10-fold cross-validation was applied. For external validation, the models trained with dataset A were tested on dataset B. The detection performance of the models was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC). RESULTS: The mean ± SD diameters of RCCs in dataset A and dataset B were 2.67 ± 0.77 cm and 2.64 ± 0.78 cm, respectively. Our algorithm yielded an accuracy, sensitivity, and specificity of 88.3%, 84.3%, and 92.3%, respectively, with dataset A and 87.5%, 84.8%, and 90.2%, respectively, with dataset B. The AUC of the algorithm with dataset A and dataset B was 0.930 and 0.933, respectively. CONCLUSIONS: The proposed deep learning-based algorithm achieved high accuracy, sensitivity, specificity, and AUC for the detection of small RCCs with both internal and external validations, suggesting that this algorithm could contribute to the early detection of small RCCs.


Assuntos
Carcinoma de Células Renais , Aprendizado Profundo , Neoplasias Renais , Algoritmos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
20.
J Neurosci Res ; 99(10): 2558-2572, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245603

RESUMO

In athletes, long-term intensive training has been shown to increase unparalleled athletic ability and might induce brain plasticity. We evaluated the structural connectome of world-class gymnasts (WCGs), as mapped by diffusion-weighted magnetic resonance imaging probabilistic tractography and a multishell, multitissue constrained spherical deconvolution method to increase the precision of tractography at the tissue interfaces. The connectome was mapped in 10 Japanese male WCGs and in 10 age-matched male controls. Network-based statistic identified subnetworks with increased connectivity density in WCGs, involving the sensorimotor, default mode, attentional, visual, and limbic areas. It also revealed a significant association between the structural connectivity of some brain structures with functions closely related to the gymnastic skills and the D-score, which is used as an index of the gymnasts' specific physical abilities for each apparatus. Furthermore, graph theory analysis demonstrated the characteristics of brain anatomical topology in the WCGs. They displayed significantly increased global connectivity strength with decreased characteristic path length at the global level and higher nodal strength and degree in the sensorimotor, default mode, attention, and limbic/subcortical areas at the local level as compared with controls. Together, these findings extend the current understanding of neural mechanisms that distinguish WCGs from controls and suggest brain anatomical network plasticity in WCGs resulting from long-term intensive training. Future studies should assess the contribution of genetic or early-life environmental factors in the brain network organization of WCGs. Furthermore, the indices of brain topology (i.e., connection density and graph theory indices) could become markers for the objective evaluation of gymnastic performance.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Ginástica/fisiologia , Plasticidade Neuronal/fisiologia , Adolescente , Humanos , Masculino , Probabilidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...