Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 1144, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277674

RESUMO

The nucleosome including H2A.B, a mammalian-specific H2A variant, plays pivotal roles in spermatogenesis, embryogenesis, and oncogenesis, indicating unique involvement in transcriptional regulation distinct from canonical H2A nucleosomes. Despite its significance, the exact regulatory mechanism remains elusive. This study utilized solid-state nanopores to investigate DNA unwinding dynamics, applying local force between DNA and histones. Comparative analysis of canonical H2A and H2A.B nucleosomes demonstrated that the H2A.B variant required a lower voltage for complete DNA unwinding. Furthermore, synchronization analysis and molecular dynamics simulations indicate that the H2A.B variant rapidly unwinds DNA, causing the H2A-H2B dimer to dissociate from DNA immediately upon disassembly of the histone octamer. In contrast, canonical H2A nucleosomes unwind DNA at a slower rate, suggesting that the H2A-H2B dimer undergoes a state of stacking at the pore. These findings suggest that nucleosomal DNA in the H2A.B nucleosomes undergoes a DNA unwinding process involving histone octamer disassembly distinct from that of canonical H2A nucleosomes, enabling smoother unwinding. The integrated approach of MD simulations and nanopore measurements is expected to evolve into a versatile tool for studying molecular interactions, not only within nucleosomes but also through the forced dissociation of DNA-protein complexes.


Assuntos
DNA , Histonas , Simulação de Dinâmica Molecular , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , Nucleossomos/genética , Histonas/metabolismo , Histonas/química , Histonas/genética , DNA/metabolismo , DNA/química , DNA/genética , Animais , Conformação de Ácido Nucleico , Nanoporos
2.
J Biol Chem ; 299(12): 105477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981206

RESUMO

RNA polymerase II (RNAPII) transcribes DNA wrapped in the nucleosome by stepwise pausing, especially at nucleosomal superhelical locations -5 and -1 [SHL(-5) and SHL(-1), respectively]. In the present study, we performed cryo-electron microscopy analyses of RNAPII-nucleosome complexes paused at a major nucleosomal pausing site, SHL(-1). We determined two previously undetected structures, in which the transcribed DNA behind RNAPII is sharply kinked at the RNAPII exit tunnel and rewrapped around the nucleosomal histones in front of RNAPII by DNA looping. This DNA kink shifts the DNA orientation toward the nucleosome, and the transcribed DNA region interacts with basic amino acid residues of histones H2A, H2B, and H3 exposed by the RNAPII-mediated nucleosomal DNA peeling. The DNA loop structure was not observed in the presence of the transcription elongation factors Spt4/5 and Elf1. These RNAPII-nucleosome structures provide important information for understanding the functional relevance of DNA looping during transcription elongation in the nucleosome.


Assuntos
Histonas , Nucleossomos , RNA Polimerase II , Cromatina , Microscopia Crioeletrônica , DNA/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo
3.
J Biochem ; 174(6): 549-559, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37757444

RESUMO

Histone H3.8 is a non-allelic human histone H3 variant derived from H3.3. H3.8 reportedly forms an unstable nucleosome, but its structure and biochemical characteristics have not been revealed yet. In the present study, we reconstituted the nucleosome containing H3.8. Consistent with previous results, the H3.8 nucleosome is thermally unstable as compared to the H3.3 nucleosome. The entry/exit DNA regions of the H3.8 nucleosome are more accessible to micrococcal nuclease than those of the H3.3 nucleosome. Nucleosome transcription assays revealed that the RNA polymerase II (RNAPII) pausing around the superhelical location (SHL) -1 position, which is about 60 base pairs from the nucleosomal DNA entry site, is drastically alleviated. On the other hand, the RNAPII pausing around the SHL(-5) position, which is about 20 base pairs from the nucleosomal DNA entry site, is substantially increased. The cryo-electron microscopy structure of the H3.8 nucleosome explains the mechanisms of the enhanced accessibility of the entry/exit DNA regions, reduced thermal stability and altered RNAPII transcription profile.


Assuntos
Histonas , Nucleossomos , Humanos , Histonas/genética , Microscopia Crioeletrônica , DNA/química , RNA Polimerase II/metabolismo
4.
Nucleic Acids Res ; 51(19): 10364-10374, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37718728

RESUMO

The N-terminal tails of histones protrude from the nucleosome core and are target sites for histone modifications, such as acetylation and methylation. Histone acetylation is considered to enhance transcription in chromatin. However, the contribution of the histone N-terminal tail to the nucleosome transcription by RNA polymerase II (RNAPII) has not been clarified. In the present study, we reconstituted nucleosomes lacking the N-terminal tail of each histone, H2A, H2B, H3 or H4, and performed RNAPII transcription assays. We found that the N-terminal tail of H3, but not H2A, H2B and H4, functions in RNAPII pausing at the SHL(-5) position of the nucleosome. Consistently, the RNAPII transcription assay also revealed that the nucleosome containing N-terminally acetylated H3 drastically alleviates RNAPII pausing at the SHL(-5) position. In addition, the H3 acetylated nucleosome produced increased amounts of the run-off transcript. These results provide important evidence that the H3 N-terminal tail plays a role in RNAPII pausing at the SHL(-5) position of the nucleosome, and its acetylation directly alleviates this nucleosome barrier.


Assuntos
Histonas , Nucleossomos , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , RNA Polimerase II/genética , Acetilação , Cromatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA