Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Biol ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777834

RESUMO

Shugoshin-1 (Sgo1) is necessary for maintaining sister centromere cohesion and ensuring accurate chromosome segregation during mitosis. It has been reported that the localization of Sgo1 at the centromere is dependent on Bub1-mediated phosphorylation of histone H2A at T120. However, it remains uncertain whether other centromeric proteins play a role in regulating the localization and function of Sgo1 during mitosis. Here, we show that CENP-A interacts with Sgo1 and determines the localization of Sgo1 to the centromere during mitosis. Further biochemical characterization revealed that lysine and arginine residues in the C-terminal domain of Sgo1 are critical for binding CENP-A. Interestingly, the replacement of these basic amino acids with acidic amino acids perturbed the localization of Sgo1 and Aurora B to the centromere, resulting in aberrant chromosome segregation and premature chromatid separation. Taken together, these findings reveal a previously unrecognized but direct link between Sgo1 and CENP-A in centromere plasticity control and illustrate how the Sgo1-CENP-A interaction guides accurate cell division.

2.
J Mol Cell Biol ; 14(8)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190325

RESUMO

Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.


Assuntos
Segregação de Cromossomos , Lisina Acetiltransferase 5 , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Acetilação , Mitose , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Lisina Acetiltransferase 5/metabolismo
3.
Sci Rep ; 9(1): 13321, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527719

RESUMO

Helicobacter Pylori is a known causal agent of gastric malignancies and peptic ulcers. The extremophile nature of this bacterium is protecting it from designing a potent drug against it. Therefore, the use of computational approaches to design antigenic, stable and safe vaccine against this pathogen could help to control the infections associated with it. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a multi-epitopes subunit vaccine against H. Pylori. A total of 7 CTL and 12 HTL antigenic epitopes based on c-terminal cleavage and MHC binding scores were predicted from the four selected proteins (CagA, OipA, GroEL and cagA). The predicted epitopes were joined by AYY and GPGPG linkers. Β-defensins adjuvant was added to the N-terminus of the vaccine. For validation, immunogenicity, allergenicity and physiochemical analysis were conducted. The designed vaccine is likely antigenic in nature and produced robust and substantial interactions with Toll-like receptors (TLR-2, 4, 5, and 9). The vaccine developed was also subjected to an in silico cloning and immune response prediction model, which verified its efficiency of expression and the immune system provoking response. These analyses indicate that the suggested vaccine may produce particular immune responses against H. pylori, but laboratory validation is needed to verify the safety and immunogenicity status of the suggested vaccine design.


Assuntos
Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Helicobacter pylori/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Sequência de Aminoácidos , Vacinas Bacterianas/imunologia , Biologia Computacional/métodos , Simulação por Computador , Desenho de Fármacos , Helicobacter pylori/genética , Humanos , Modelos Moleculares , Proteoma , Vacinas/imunologia , Fatores de Virulência
4.
Methods ; 70(1): 28-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24631890

RESUMO

To achieve specificity and sensitivity using immunohistochemistry it is necessary to combine the application of validated primary antibodies with optimised pre-treatment, detection and visualisation steps. The influence of these surrounding procedures is reviewed. A practical evaluation of tyramide signal amplification and rolling circle amplification detection methods is provided in which formalin fixed paraffin embedded sections of adenocarcinomas of breast, colon and lung together with squamous metaplasia of lung were immunostained with CD20 and CK19 primary antibodies. The results indicate that the detection systems are of comparable sensitivity and specificity.


Assuntos
Antígenos/química , Imuno-Histoquímica/métodos , Tiramina/química , Animais , Anticorpos/imunologia , Antígenos CD20/química , Neoplasias da Mama/imunologia , Neoplasias do Colo/imunologia , Feminino , Formaldeído/química , Temperatura Alta , Humanos , Neoplasias Pulmonares/imunologia , Inclusão em Parafina , Temperatura , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...