Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Multimed Tools Appl ; : 1-19, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37362723

RESUMO

Yellow rust is a devastating disease that causes significant losses in wheat production worldwide and significantly affects wheat quality. It can be controlled by cultivating resistant cultivars, applying fungicides, and appropriate agricultural practices. The degree of precautions depends on the extent of the disease. Therefore, it is critical to detect the disease as early as possible. The disease causes deformations in the wheat leaf texture that reveals the severity of the disease. The gray-level co-occurrence matrix(GLCM) is a conventional texture feature descriptor extracted from gray-level images. However, numerous studies in the literature attempt to incorporate texture color with GLCM features to reveal hidden patterns that exist in color channels. On the other hand, recent advances in image analysis have led to the extraction of data-representative features so-called deep features. In particular, convolutional neural networks (CNNs) have the remarkable capability of recognizing patterns and show promising results for image classification when fed with image texture. Herein, the feasibility of using a combination of textural features and deep features to determine the severity of yellow rust disease in wheat was investigated. Textural features include both gray-level and color-level information. Also, pre-trained DenseNet was employed for deep features. The dataset, so-called Yellow-Rust-19, composed of wheat leaf images, was employed. Different classification models were developed using different color spaces such as RGB, HSV, and L*a*b, and two classification methods such as SVM and KNN. The combined model named CNN-CGLCM_HSV, where HSV and SVM were employed, with an accuracy of 92.4% outperformed the other models.

2.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357467

RESUMO

Genetic resistance against biotic stress is a major goal in many wheat breeding programs. However, modern wheat cultivars have a limited genetic variation for disease and pest resistance and there is always a possibility of the evolution of new diseases and pests to overcome previously identified resistance genes. A total of 125 synthetic hexaploid wheats (SHWs; 2n = 6x = 42, AABBDD, Triticum aestivum L.) were characterized for resistance to fungal pathogens that cause wheat rusts (leaf; Puccinia triticina, stem; P. graminis f.sp. tritici, and stripe; P. striiformis f.sp. tritici) and crown rot (Fusarium spp.); cereal cyst nematode (Heterodera spp.); and Hessian fly (Mayetiola destructor). A wide range of genetic variation was observed among SHWs for multiple (two to five) biotic stresses and 17 SHWs that were resistant to more than two stresses. The genomic regions and potential candidate genes conferring resistance to these biotic stresses were identified from a genome-wide association study (GWAS). This GWAS study identified 124 significant marker-trait associations (MTAs) for multiple biotic stresses and 33 of these were found within genes. Furthermore, 16 of the 33 MTAs present within genes had annotations suggesting their potential role in disease resistance. These results will be valuable for pyramiding novel genes/genomic regions conferring resistance to multiple biotic stresses from SHWs into elite bread wheat cultivars and providing further insights on a wide range of stress resistance in wheat.


Assuntos
Adaptação Biológica/genética , Estudo de Associação Genômica Ampla , Poliploidia , Estresse Fisiológico/genética , Triticum/fisiologia , Biologia Computacional/métodos , Resistência à Doença/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Patógeno/genética , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA